
2024/05/17 02:16 1/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Design Task Functions (DTF)

Design Task Functions are typically higher level functions that will modify data parameters and make
repeated use of the various Dose Calculation Functions and Radiotherapy Support Functions to
accomplish some type of “optimal” device or plan design.

Aperture Design

Below is a list of the most common aperture design task function and a brief explanation of their
intended usage (Specific details of each function, argument parameters, and return values are provided
at the Dosimetry App Manifest Guide).

compute_aperture:
Compute the aperture without smoothing.
Recommended mill radius value is is 4.7625mm (0.1875“) and advised to be no less than
2.38125mm (0.09375”) to allow for accurate machining.

compute_smoothed_aperture:
Compute an aperture smoothed with a vertex shift on all targets and organs
Recommended mill radius value is is 4.7625mm (0.1875“) and advised to be no less than
2.38125mm (0.09375”) to allow for accurate machining.

smooth_aperture:
Smooth an existing aperture with a vertex shift.

get_field_rect:
Gets the bounding box (in BEV) for the aperture opening (at true size not projected).

compute_aperture_projection:
Compute the projection of the aperture onto the plane with the given Z depth

compute_aperture_3d_shape:
Computes the final physical aperture device as a triangulated mesh

make_aperture:
Builds an aperture using the given point list.
Recommended mill radius value is is 4.7625mm (0.1875“) and advised to be no less than
2.38125mm (0.09375”) to allow for accurate machining.

remove_polyset_holes:
A polyset's holes defined an aperture's floating islands. By removing the polyset holes, the
resulting computed aperture will contain no islands.
This function removes the holes from a polyset of an existing aperture (e.g.: Call
compute_aperture() and using the polyset from the returned aperture call
remove_polyset_holes(). Then replace the original aperture polyset with the polyset returned
from remove_polyset_holes())

apply_mill_radius:
This function applies a machinability enforcement using a tool mill radius to a polyset of an
existing aperture. The resulting polyset shape will not have corners that produce machined
under cutting for the mill radius defined.

http://docs.apps.dotdecimal.com

2024/05/17 02:16 2/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Geometry

A beam-limiting device is typically referred to as an aperture. It limits the lateral extent of the radiation
field, typically such that the beam’s eye view (BEV) projection of the target is circumscribed including
provision for a penumbral margin. Since the user specifies the bixel grid parameters, a function must be
available to allow for computation of the bounding field for the aperture shape to allow users to compute
dose with an acceptable bixel grid.

The aperture device is modeled as one or more open (i.e. the radiation can pass through the defined
shape) or closed (i.e. the radiation cannot pass through the defined shape) contours. The actual device
blocking is achieved by shaping a high density material, either milled or with a multi-leaf collimator. The
contour shapes are modeled at their intended position Zb along the beam axis. The overall aperture is
bounded by the mounting apparatus that holds the aperture (typically creating circular or rectangular
bounding aperture shapes).

The contour shape can be constrained by the ability to mechanically construct the shape. Milling can be
assumed as the primary mode of construction, with a recommended mill radius value is is 4.7625mm
(0.1875“) and advised to be no less than 2.38125mm (0.09375”) to allow for accurate machining.

Aperture beam-limiting devices have a physical thickness which is ignored in the beam model. Only the
aperture opening shape is considered during any Dosimetry App calculations. Apertures are considered
to be infinitely thin and thickness of the devices and slabs will be ignored for divergence and on/off
blocking (See Slopsema).

Refer to Beamline Representation for device positioning.

Computing an Aperture Shape

This example will provide a high level walk through of calling the compute_smoothed_aperture function
(note compute_aperture is simply a reduced version of this function so this example applies equally to
both functions). The code here is meant to be used as a guide on the process to follow and functions/data
types to construct. The returned value is the computed geometric shape of the aperture (projected to the
given downstream position) based on the arguments passed into the calculation request.

Construct a beam_geometry1.

// beam_geometry(std::vector2d sad, matrix<4,4,double image_to_beam);1.
// sad: The apparent source-to-isocenter distance of the beam. A beam
can have different apparent source positions
// in the X and Y directions, so SAD is a two-dimensional value.
beam_geometry geometry(make_vector(main_sad, main_sad),
 rotation_about_axis(make_vector(1.0, 0.0, 0.0),
angle<double,degrees>(angle<double,degrees>(180.))) *
 rotation_about_axis(make_vector(0.0, 0.0, 1.0), -
angle<double,degrees>(0.)) * translation(-make_vector(0., 0., 0.)));

Construct a triangle_mesh of the target for the aperture2.

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:proton_delivery_system_conventions#beam_representation

2024/05/17 02:16 3/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

// struct_geom is a structure_geometry data type representing the1.
desired contoured target volume
triangle_mesh volume =
compute_triangle_mesh_from_structure(struct_geom);

Define aperture_creation_params for aperture geometric properties3.

aperture_creation_params ap_params;1.

ap_params.targets.push_back(volume); // Add meshed target to list of
targets
ap_params.target_margin = 5.0; // Set margin around targets (5mm)
ap_params.view = compute_beamline_view(geometry, make_vector(0., 0.,
0.)); // Set the beam source view(isocenter at 0,0,0)
ap_params.mill_radius = 1.6; // Set the tool radius used during
aperture machining (1.6mm)
ap_params.downstream_edge = 100.0; // Set the distance from patient
side surface to isocenter along CAX (100mm)

The aperture_creation_params are then sent to the dosimetry app as calculation requests following4.
thinknode™ calculation request examples.

// Compute the aperture shape. Parameters are:1.
aperture_creation_params, smoothSize, iter, beam_geometry
aperture aper = compute_smoothed_aperture(ap_params, 1., 5,
geometry);

Dose/Image Based Aperture Shape

Using exposed Dosimetry App functions an existing dose image can be used as a target structure for
aperture creation. The compute_triangle_mesh_from_image function can be used to create a target from
a dose iamge at a specified iso-level.

Specific details of each function, argument parameters, and return values are provided at the Dosimetry
App Manifest Guide.

// Create a target structure at the 50% isodose line.
triangle_mesh dose_structure =
compute_triangle_mesh_from_image(image_50_dose, 50);
// Push the target to the aperture_creation_params
aperture_creation_params ap_params;
ap_params.targets.push_back(dose_structure);

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:thinknode
http://docs.apps.dotdecimal.com
http://docs.apps.dotdecimal.com

2024/05/17 02:16 4/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Point vs Dual Source

Point (single) and Dual Source apertures are created in roughly the same manner. When defining a
beam_geometry for the aperture, the SAD vector2d automatically defines the source type of the
aperture.

Fig. 1: Point (single) source

2024/05/17 02:16 5/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Fig. 2: Dual source

Single Source

The SAD IEC-X and IEC-Y values used during construction of the beam_geometry are identical for
constructing apertures for Single Point Source machines.

// sad: The apparent source-to-isocenter distance of the beam. A beam can
have different apparent source positions
// in the X and Y directions, so SAD is a two-dimensional value, however,
for a Single Point Source machine
// these values match.
double main_sad = 1000.0;
beam_geometry geometry(make_vector(main_sad, main_sad),
 rotation_about_axis(make_vector(1.0, 0.0, 0.0),
angle<double,degrees>(angle<double,degrees>(180.))) *
 rotation_about_axis(make_vector(0.0, 0.0, 1.0), -
angle<double,degrees>(0.)) * translation(-make_vector(0., 0., 0.)));

Dual Source

The SAD IEC-X and IEC-Y values used during construction of the beam_geometry are different for
constructing apertures for Dual Source machines.

2024/05/17 02:16 6/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

// sad: The apparent source-to-isocenter distance of the beam. A beam can
have different apparent source positions
// in the X and Y directions, so SAD is a two-dimensional value, with non-
matching values for a Dual Source machine.
double IEC_X = 1050.0;
double IEC_Y = 1000.0;
beam_geometry geometry(make_vector(IEC_X, IEC_Y),
 rotation_about_axis(make_vector(1.0, 0.0, 0.0),
angle<double,degrees>(angle<double,degrees>(180.))) *
 rotation_about_axis(make_vector(0.0, 0.0, 1.0), -
angle<double,degrees>(0.)) * translation(-make_vector(0., 0., 0.)));

Aperture Mill Radius and Smoothing

Enforcing machinability of the apertures at all evaluation steps is required in order to achieve plan vs.
actual. Determining the machinable aperture shape is accomplished by performing an offset of the
current “unmachinable” aperture shape by the radius of the final milling tool (in either the inward or
outward direction) and then re-offsetting this result by the same distance. Machinability is enforced
during aperture computation by using the mill_radius parameter of the aperture_creation_params.

Additionally, smoothing can also be explicitly used to further simplify the aperture shape. As shown in
figure 4 below, a line segment (Line1) is created using the center points of the two edges that touch the
vertex. A second line segment (Line2) is created going from the vertex to the center point of Line1. The
vertex will be shifted along Line2 according the the smoothSize parameter of the
compute_smoothed_aperture function. The value of smoothSize should be set between 0.0 and 1.0,
indicating how far along Line2 the vertex will shift (0.5 will shift it to the center of Line2, and 1.0 will shift
it to the intersection of Line1 and Line2). The iter parameter will indicate how many times the smoothing
algorithm will act on the given aperture, with higher values resulting in more smoothing.

The images below provide an exaggerated visual explanation of the creation options for aperture
smoothing and mill radius.

figure 3: shows the beam setup of the example aperture1.
figure 4: shows an example diagram of the smoothing algorithm.2.
figure 5: shows a resulting aperture shape with no mill radius and no smoothing applied to the3.
aperture creation parameters

Note: Recommended mill radius value is is 2.3815mm (0.09375“) and advised to be no less
than 0.79375mm (0.03125”) to allow for accurate machining.

figure 6: shows a resulting aperture shape (black) with a large mill radius applied but not utilizing4.
smoothing options in the compute aperture process.
figure 7: shows a resulting aperture shape with a large mill radius applied to the aperture creation5.
parameters and smoothing options using the compute_smoothed_aperture function.

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_smoothalgorithm
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_beam_setup
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_smoothalgorithm
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_noradiusnosmooth
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_radiusnosmooth
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_radiussmooth

2024/05/17 02:16 7/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Fig. 3: Source (Red), Beam (Green), Aperture Plane
(Gold), and Target (Blue)

Fig. 4: Method of smoothing

Fig. 5: Aperture no mill radius or smoothing

2024/05/17 02:16 8/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Fig. 6: Aperture with a mill radius, no smoothing

Fig. 7: Aperture with mill radius and smoothing

Aperture Shape Manipulation

The aperture_creation_params hold the following parameters that can be optionally used with the
compute aperture functions to manipulate the resulting computed aperture opening:

aperture_centerlines
aperture_half_planes
aperture_corner_planes
aperture_organs
aperture_manual_override

Below is a brief explanation of each of the manipulation tools and their intended effect (Specific details of
each argument parameter are provided at the Dosimetry App Manifest Guide).

Example usage:

aperture_creation_params ap_params;
//...
// Set the rest of the aperture_creation_params necessary

http://docs.apps.dotdecimal.com

2024/05/17 02:16 9/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

//...
ap_params.overrides.push_back(aperture_manual_override(make_polyset(poly),
true));
ap_params.half_planes.push_back(aperture_half_plane(make_vector(0., 0.),
45.));
aperture aper = compute_smoothed_aperture(ap_params, 1., 5, geometry);

Structure Centerline

Data struct aperture_centerline

The aperture centerline defines a geometry using the centerline of a structure and a fixed width margin
to create a region to remove from the aperture opening. In figure 8 the original aperture shape (blue),
structure projection (orange), structure centerline projection (dotted red), and margin (dashed red) are
shown. The resulting shape is the combination of the structure_centerline and the original aperture
opening shape. The resulting final aperture shape is down in dashed black.

Fig. 8

Aperture Organ

Data struct aperture_organ

The aperture organ defines a geometry that can be used to clip the aperture opening by the projection of
the structure (into BEV), and if applicable, expanded by a margin. By setting the occlude flag, the
projected organ shape used for clipping can be limited by the targets if the target is between the source
and the organ.

In figure 9 the original aperture shape (blue) and organ structure (red) are shown. With occlude organ by
target set to false, the organ outline is projected to the aperture plane to limit the aperture opening
shape. By setting the occlude organ by target to true, the target limits the organ projection to the
aperture downstream edge plane, thus the organ projection has no effect on the aperture opening shape.
The resulting final aperture shape is down in dashed black.

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_centline_setup
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_organ_setup

2024/05/17 02:16 10/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Fig. 9

In figure 10 the original aperture shape (blue) and organ structure (red) are shown. Because the organ is
in front of the target (in BEV) the organ shape will always be projected to the aperture downstream edge
plan and limit the aperture opening. The resulting final aperture shape is down in dashed black.

Fig. 10

Manual Override

Data struct aperture_manual_override.

Manual override allows the manipulation of the aperture opening using a constructed polyset shape.
Coordinates of the points making up the polygon at to be specified in BEV at the plane of the aperture
downstream edge. The aperture opening can either be expanded to or limited based on the specified
shape of the override polygons. figure 11 shows the aperture opening (black) and the override polygon
(red). The override polygon can expand or limit the shape of the aperture opening based on the flags
passed into the aperture_creation_param.

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_organ_setup1
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_manual_override

2024/05/17 02:16 11/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Fig. 11: Manual Override Shape

Aperture Half & Corner Planes

Data struct aperture_half_plane and aperture_corner_plane

The aperture half and corner planes define a geometry that can be used to remove the portion of the
aperture opening in the region on the positive sides (side to which the normal points) of the planes. This
feature is necessary in order to create match field aperture devices. In figure 12, the first plane is defined
by the origin (0., 0.) and a normal direction of 0 degrees (along the positive x axis). The second plane is
defined by the same point, and a normal direction of 90 degrees (along the positive y axis). The result
(black) shows how the aperture opening is clipped by removing from the shape anything that is on the
positive side of both planes. This same principle can be used with the aperture_half_plane parameter,
but instead only specifying one plane to clip the aperture by.

Fig. 12: Aperture Corner Planes

Range Compensator Design

The following example assumes you are familiar with the dosimetry functions and types. These examples
will provide a rough process of creating a proton range compensator surface in C++ using pre-existing
libraries. The code here is meant to be used as a guide on the process to follow and functions/data types
to construct.

compute_optimized_rc:

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_ap_planes
http://docs.apps.dotdecimal.com

2024/05/17 02:16 12/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Compute the optimal range compensator for an SOBP field with or without an existing dose.

Refer to Beamline Representation for device positioning.

Range Compensator Optimizer Options

The rc_opt_properties data type stores the optimizer properties needed for a range compensator
optimization. Here target requirements, smearing, shifts, current and patch dose can be set.

The interation_count parameter of the rc_opt_properties struct is used to set whether to create a “ray
tracing” (i.e. geometric) range compensator or a dose based optimized range compensator. Note that
using iteration counts performs a dose calculation per iteration, so it may take considerably longer.

// The maximum number of iterations for the optimization to run.
// Setting iteration_count = 0 creates a geometric only non optimized
range compensator.
int iteration_count;

Compute an Optimized Range Compensator

This example will provide a high level walk through of calling the compute_optimized_rc function. The
code here is meant to be used as a guide on the process to follow and functions/data types to construct.
The returned value is the computed proton_degrader based on the arguments passed into the calculation
request.

The compute_optimized_rc function takes the following input data types that must be constructed prior to
calling the function:

// Compute the optimal range compensator (RC) for an SOBP field with or
without an existing dose.
api(fun monitored)
// A nurbs range compensator.
proton_degrader
compute_optimized_rc(
 // Image 3D of patient stopping power values.
 image3 const& stopping_power_image,
 // The properties of the beam for which an RC is to be computed.
 beam_properties const& beam_props,
 // The SOBP calculation layers for the desired range and mod.
 std::vector<sobp_calculation_layer> const& layers,
 // The aperture for this beam.
 aperture const& aper,
 // Material properties to use for the resulting RC.

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:proton_delivery_system_conventions#beam_representation

2024/05/17 02:16 13/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

 proton_material_properties const& rc_material,
 // The downstream position of the RC on the side nearest to the
patient.
 double rc_patient_side_edge,
 // Target(s) for range compensator construction.
 std::vector<triangle_mesh> const& targets,
 // Optimization properties to use for range compensator design.
 rc_opt_properties const& rc_opts);

Patch Field Range Compensator

A patch field range compensator can easily be created using the target(s), ct image, and pre-existing
dose. The rc_opt_properties data type created prior to range compensator optimization can optionally
take in a current_dose which will be used along with the target(s) distal surface to determine the
appropriate range compensator surface. In combination with the patch_distal_dose value, the range
compensator surface can be optimized to include the current dose the target has already received.

The figure 13 example below shows a brief explanation of the usage:

Fig. 13: Range Compensator Patch Field

The target (green) is shown within the 3D image (blue & red) that represents the current dose of the
target that has been delivered from another field angle. The blue values of the image represent zero
dose while the red 100%. Passing this current_dose image and a patch_distal_dose of 20 to the
rc_opt_properties will limit the range compensator distal surface to the target distal surface while taking
consideration of the 20% isodose line of the current dose.

An approximation of the resulting range compensator surface is shown in figure 14 below.

https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_rc_patch_setup
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf#img_rc_patch_surface

2024/05/17 02:16 14/14 Design Task Functions (DTF)

decimal App Documentation - https://apps.dotdecimal.com/

Fig. 14: Resulting Range Compensator w/ Patch Dose

USR-001

.decimal LLC, 121 Central Park Place,
Sanford, FL. 32771

From:
https://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf

Last update: 2021/07/29 18:28

https://apps.dotdecimal.com/
https://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:design_task_functions:dtf

	Design Task Functions (DTF)
	Aperture Design
	Geometry
	Computing an Aperture Shape
	Dose/Image Based Aperture Shape

	Point vs Dual Source
	Single Source
	Dual Source

	Aperture Mill Radius and Smoothing
	Aperture Shape Manipulation
	Structure Centerline
	Aperture Organ
	Manual Override
	Aperture Half & Corner Planes

	Range Compensator Design
	Range Compensator Optimizer Options
	Compute an Optimized Range Compensator
	Patch Field Range Compensator

