
2025/07/24 00:52 1/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dicom app on
the thinknode™ framework. They are provided as is, and are written in python. Any further dependencies
are listed along with the provided scripts.

Python

Python: Overview

The provided python scripts and libraries are meant to be a foundation and starting point for using the
astroid apps on the thinknode™ framework. The provided scripts outline the basics of using ISS to store
objects, as well as constructing and making calculation requests to the calculation provider. The below
sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.

thinknode.cfg

There is a simple configuration file (thinknode.cfg) that is used to store user data for connecting to the
astroid app on the thinknode™ framework. This file is required by all scripts in the python
astroid_script_library to authenticate and use the app. A sample file with no user data is available in the
repository and the details of the information to include in the file are provided below.

basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.
api_url being the connection string to the thinknode™ framework.
apps

app_name being the current app name (e.g. dosimetry or dicom).
app_version being the current version of the app existing on the thinknode™
framework being used. If left blank the thinknode_worker will select the first app's
version returned by the Realm Versions GET request.
branch_name not currently implemented

realm_name thinknode realm
account_name thinknode account name

thinknode.cfg

{
 "basic_user": "<Base64 encoded thinknode username:password>",
 "api_url": "https://<thinknode_account>.thinknode.io/api/v1.0",

https://github.com/dotdecimal/astroid-script-library
http://www.developers.thinknode.com
http://www.developers.thinknode.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dicom:userguide:thinknode&codeblock=0

2025/07/24 00:52 2/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

 "apps":
 {
 "dosimetry":
 {
 "app_version": "1.0.0-beta1",
 "branch_name": "master"
 },
 "dicom":
 {
 "app_version": "",
 "branch_name": "master"
 },
 "rt_types":
 {
 "app_version": "",
 "branch_name": "master"
 }
 },
 "realm_name": "<thinknode realm>",
 "account_name": "<thinknode account>"
}

Python: Calculation Request

Posting a Dicom Patient

The below example shows how to post a dicom file directory to thinknode iss and return a rt_study. Using
the rt_study, sobp and pbs dose calculations can be performed. See the examples
pbs_dose_calc_from_dicom.py and sobp_dose_calc_from_dicom.py from the .decimal GitHub repository
for more in depth examples of using the dicom app to call dosimetry calculations.

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Date: 09/25/2015
Desc: Post folder to thinknode and get back a dicom_study

import os.path
from lib import thinknode_worker as thinknode
from lib import dicom_worker as dicom
from lib import decimal_logging as dl

Get IAM ids
iam = thinknode.authenticate(thinknode.read_config('thinknode.cfg'))

Create a study

https://github.com/dotdecimal/astroid-script-library

2025/07/24 00:52 3/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

study_id = dicom.make_rt_study_from_dir(iam, 'E:/dicom/MGH_Phantom_min/')

Combine uploaded CT image slices into an Image_3d datatype
study_calc = \
 thinknode.function(iam["account_name"], 'dicom', "merge_ct_image_slices",
 [
 thinknode.reference(study_id)
])
study_res = thinknode.do_calculation(iam, study_calc, False)
dl.data("Patient rt_tudy ISS ID: " + study_res)

Python: decimal Libraries

rt_types

The rt_types module is a reconstruction of all astroid types in python class format. This includes
interdependencies between types (e.g. the class “polyset” requires the class “polygon2”).

Each data type detailed in the astroid Manifest Guide has a corresponding class in this python module.

Below you will see a snippet from the rt_types module that shows the class for the polyset rt_type along
with its default initialization, expand_data and from_json functions.

class polygon2(object):

 #Initialize
 def __init__(self):
 blob = blob_type()
 self.vertices = blob.toStr()

 def expand_data(self):
 data = {}
 data['vertices'] =
parse_bytes_2d(base64.b64decode(self.vertices['blob']))
 return data

 def from_json(self, jdict):
 for k, v in jdict.items():
 if hasattr(self,k):
 setattr(self, k, v)

class polyset(object):

 #Initialize
 def __init__(self):

http://docs.apps.dotdecimal.com

2025/07/24 00:52 4/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

 self.polygons = []
 self.holes = []

 def expand_data(self):
 data = {}
 polygon = []
 for x in self.polygons:
 s = polygon2()
 s.from_json(x)
 polygon.append(s.expand_data())
 data['polygons'] = polygon
 hole = []
 for x in self.holes:
 s = polygon2()
 s.from_json(x)
 hole.append(s.expand_data())
 data['holes'] = hole
 return data

 def from_json(self, jdict):
 for k, v in jdict.items():
 if hasattr(self,k):
 setattr(self, k, v)

Interdependence: When rt_types are constructed of other or multiple named types, they will be
constructed as such in each class as seen in the polygons parameter of the polyset in the above
example.
expand_data function: Each class's expand_data function returns a python dictionary containing
each of the values in the class, with all data values expanded out to remove compression or other
encodings (i.e. providing results in a format more useful for send to other applications or for
human-readability).
from_json function: Each class's from_json function provides a method to turn a raw json string
(e.g. a result from a thinknode calculation or ISS object) into an rt_type data type. Proper use is to
first construct an empty class instance, then to call the from_json method on that instance, passing
in the desired json data string.

Below is an example usage of getting a thinknode dose image (image_3d data type in the astroid
manifest) and turning it into a rt_types image_3d data type, so that it can be expanded and then used to
output the image into a VTK graphics file:

def dose_to_vtk(dose_id):
 img_data = json.loads(thinknode.get_immutable(iam, 'dicom', dose_id))

 img = rt_types.image_3d()
 img.from_json(img_data)
 img2 = img.expand_data()

2025/07/24 00:52 5/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

 vtk.write_vtk_image3('E:/dicom/dose.vtk', img2)

thinknode_worker

The thinknode_worker module is the main work horse for communication with the astroid app and
thinknode. The module will handle authentication, posting objects to ISS, creating most of the common
calculation request structures, and posting the calculation request.

Refer to the .decimal GitHub repository for the complete module. Below are a few of the more common
thinknode_worker functions and their intended usages:

Authenticate with thinknode and store necessary ids.
Gets the context id for each app detailed in the thinknode config
Gets the app version (if non defined) for each app in the realm
param config: connection settings (url and unique basic user
authentication)
def authenticate(config):

Send calculation request to thinknode and wait for the calculation to
perform. Caches locally calculation results so if the same
calculation is performed again, the calculation
does not have to be repeatedly pulled from thinknode. Saves one calculation
time and bandwidth.
note: see post_calculation if you just want the calculation ID and don't
need to wait for the calculation to finish or get results
param config: connection settings (url, user token, and ids for context
and realm)
param json_data: calculation request in json format
param return_data: When True the data object will be returned, when false
the thinknode id for the object will be returned
param return_error: When False the script will exit when error is found,
when True the sciprt will return the error
def do_calculation(config, json_data, return_data=True, return_error=False):

Post immutable named_type object to ISS
param config: connection settings (url, user token, and ids for context
and realm)
param app_name: name of the app to use to get the context id from the iam
config
param json_data: immutable object in json format
param obj_name: object name of app to post to
def post_immutable_named(config, app_name, json_data, obj_name):
 scope = '/iss/named/' + config["account_name"] + '/rt_types' + '/' +
obj_name
 return post_immutable(config, app_name, json_data, scope)

https://github.com/dotdecimal/astroid-script-library

2025/07/24 00:52 6/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

Post immutable object to ISS
param config: connection settings (url, user token, and ids for context
and realm)
param app_name: name of the app to use to get the context id from the iam
config
param obj_id: thinknode iss reference id for object to get
def get_immutable(config, app_name, obj_id):

dicom_worker

The dicom_worker module provides simplified function and calculation requests for common dicom tasks.
This library is constantly growing as more routine tasks are programmed in python.

Refer to the .decimal GitHub repository for the complete module. Some basic examples of provided
functionality are:

Reading and posting dicom file sets or individual files1.
Make a dicom study or patient from local files or thinknode data2.
Pull out dicom data from thinknode data3.

vtk_worker

The VTK worker provides a means to write out common rt_types to a vtk file format (The Visualization
TooKit) that can be visualized in Paraview. It's most useful for displaying and post-processing image,
mesh, and other primitive object data types.

Below is an example of turning a dose image_3d into a vtk file for visualization in Paraview:

def dose_to_vtk(dose_id):
 img_data = json.loads(thinknode.get_immutable(iam, 'dicom', dose_id))

 img = rt_types.image_3d()
 img.from_json(img_data)
 img2 = img.expand_data()

 vtk.write_vtk_image3('E:/dicom/dose.vtk', img2)

decimal_logging

The decimal_logging module provides formatted and detailed output window messages and file logging.

The following settings are available in the decimal_logging.py file: display_timestamps: display
timestamps in the output window/logfile display_types: display message types (e.g. debug, data, alert)
in the output window/logfile log_file: sets the logfile name and location

https://github.com/dotdecimal/astroid-script-library
http://www.vtk.org/
http://www.vtk.org/
http://www.paraview.org/

2025/07/24 00:52 7/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

Debugging

When debugging, use the dl.debug() function and set the isDebug flag in the decimal_logging library to
True. This toggles on the output for each of the dl.debug calls. By default we keep debugging off, but it
can be turned on as needed.

Other Flags

The following image shows the logging settings for each message type as:

Timestamps = True; Types = True1.
Timestamps = False; Types = True2.
Timestamps = False; Types = False3.

File Logging

The decimal_logging library also provides simple file logging. The log_file variable at the top of the library
sets the log file. By using any of the following functions, you can easily log data to the specified file:

log(message)
log_debug_data(message,data)

2025/07/24 00:52 8/8 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

log_data(data)

USR-001

.decimal LLC, 121 Central Park Place,
Sanford, FL. 32771

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:
http://apps.dotdecimal.com/doku.php?id=dicom:userguide:thinknode

Last update: 2021/07/29 18:23

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=dicom:userguide:thinknode

	thinknode™ Examples
	Python
	Python: Overview
	thinknode.cfg

	Python: Calculation Request
	Posting a Dicom Patient

	Python: decimal Libraries
	rt_types
	thinknode_worker
	dicom_worker
	vtk_worker
	decimal_logging
	Debugging
	Other Flags
	File Logging

