
2025/04/19 00:14 1/4 thinknode™ Examples

decimal App Documentation - https://apps.dotdecimal.com/

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dicom app on
the thinknode™ framework. They are provided as is, and are written in python. Any further dependencies
are listed along with the provided scripts.

Python

Python: Overview

The provided python scripts and libraries are meant to be a foundation and starting point for using the
astroid apps on the thinknode™ framework. The provided scripts outline the basics of using ISS to store
objects, as well as constructing and making calculation requests to the calculation provider. The below
sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.

thinknode.cfg

There is a simple configuration file (thinknode.cfg) that is used to store user data for connecting to the
astroid app on the thinknode™ framework. This file is required by all scripts in the python
astroid_script_library to authenticate and use the app. A sample file with no user data is available in the
repository and the details of the information to include in the file are provided below.

basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.
api_url being the connection string to the thinknode™ framework.
apps

app_name being the current app name (e.g. dosimetry or dicom).
app_version being the current version of the app existing on the thinknode™
framework being used. If left blank the thinknode_worker will select the first app's
version returned by the Realm Versions GET request.
branch_name not currently implemented

realm_name thinknode realm
account_name thinknode account name

thinknode.cfg

{
 "basic_user": "<Base64 encoded thinknode username:password>",
 "api_url": "https://<thinknode_account>.thinknode.io/api/v1.0",

https://github.com/dotdecimal/astroid-script-library
http://www.developers.thinknode.com
http://www.developers.thinknode.com
https://apps.dotdecimal.com/doku.php?do=export_code&id=dicom:userguide:thinknode&codeblock=0

2025/04/19 00:14 2/4 thinknode™ Examples

decimal App Documentation - https://apps.dotdecimal.com/

 "apps":
 {
 "dosimetry":
 {
 "app_version": "1.0.0-beta1",
 "branch_name": "master"
 },
 "dicom":
 {
 "app_version": "",
 "branch_name": "master"
 },
 "rt_types":
 {
 "app_version": "",
 "branch_name": "master"
 }
 },
 "realm_name": "<thinknode realm>",
 "account_name": "<thinknode account>"
}

Python: decimal Libraries

rt_types

The rt_types module is a reconstruction of all astroid types in python class format. This includes
interdependencies between types (e.g. the class “polyset” requires the class “polygon2”).

Each data type detailed in the astroid Manifest Guide has a corresponding class in this python module.

Below you will see a snippet from the rt_types module that shows the class for the polyset rt_type along
with its default initialization, expand_data and from_json functions.

class polygon2(object):

 #Initialize
 def __init__(self):
 blob = blob_type()
 self.vertices = blob.toStr()

 def expand_data(self):
 data = {}
 data['vertices'] =

http://docs.apps.dotdecimal.com

2025/04/19 00:14 3/4 thinknode™ Examples

decimal App Documentation - https://apps.dotdecimal.com/

parse_bytes_2d(base64.b64decode(self.vertices['blob']))
 return data

 def from_json(self, jdict):
 for k, v in jdict.items():
 if hasattr(self,k):
 setattr(self, k, v)

class polyset(object):

 #Initialize
 def __init__(self):
 self.polygons = []
 self.holes = []

 def expand_data(self):
 data = {}
 polygon = []
 for x in self.polygons:
 s = polygon2()
 s.from_json(x)
 polygon.append(s.expand_data())
 data['polygons'] = polygon
 hole = []
 for x in self.holes:
 s = polygon2()
 s.from_json(x)
 hole.append(s.expand_data())
 data['holes'] = hole
 return data

 def from_json(self, jdict):
 for k, v in jdict.items():
 if hasattr(self,k):
 setattr(self, k, v)

Interdependence: When rt_types are constructed of other or multiple named types, they will be
constructed as such in each class as seen in the polygons parameter of the polyset in the above
example.
expand_data function: Each class's expand_data function returns a python dictionary containing
each of the values in the class, with all data values expanded out to remove compression or other
encodings (i.e. providing results in a format more useful for send to other applications or for
human-readability).
from_json function: Each class's from_json function provides a method to turn a raw json string
(e.g. a result from a thinknode calculation or ISS object) into an rt_type data type. Proper use is to
first construct an empty class instance, then to call the from_json method on that instance, passing
in the desired json data string.

2025/04/19 00:14 4/4 thinknode™ Examples

decimal App Documentation - https://apps.dotdecimal.com/

Below is an example usage of getting a thinknode dose image (image_3d data type in the astroid
manifest) and turning it into a rt_types image_3d data type, so that it can be expanded and then used to
output the image into a VTK graphics file:

def dose_to_vtk(dose_id):
 img_data = json.loads(thinknode.get_immutable(iam, 'dicom', dose_id))

 img = rt_types.image_3d()
 img.from_json(img_data)
 img2 = img.expand_data()

 vtk.write_vtk_image3('E:/dicom/dose.vtk', img2)

dicom_worker

From:
https://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:
https://apps.dotdecimal.com/doku.php?id=dicom:userguide:thinknode&rev=1443185942

Last update: 2021/07/29 18:21

https://apps.dotdecimal.com/
https://apps.dotdecimal.com/doku.php?id=dicom:userguide:thinknode&rev=1443185942

	thinknode™ Examples
	Python
	Python: Overview
	thinknode.cfg

	Python: decimal Libraries
	rt_types
	dicom_worker

