2026/01/25 13:11 1/16 thinknode™ Examples

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python and c++. Any further
dependencies are listed along with the provided scripts.

C++

A simple C++ project that handles posting immutable objects and calculation requests to thinknode™
framework. The main() function toggles on which task to perform. Below are the defined functions of the
project as well as a link to download the file in its entirety.

Dependencies:

e libcurl
e jsoncpp

thinknode.cpp

e thinknode.cpp

// Copyright (c) 2015 .decimal, Inc. All rights reserved.
// Desc: Worker to perform tasks on thinknode framework

#include "stdafx.h"
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <json/json.h>

#define CURL_STATICLIB
#include <curl/curl.h>

using namespace std;

// API configuration

string basic_user = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456"; // Baseb4 encoded
username:password

string api url = "https://api.thinknode.com/v1.0"; // thinknode url
string app name = "Dosimetry"; // app name
string app version = "1.0.0"; // app version

decimal App Documentation - http://apps.dotdecimal.com/

http://curl.haxx.se/libcurl/c/example.html
https://github.com/open-source-parsers/jsoncpp
http://apps.dotdecimal.com/lib/exe/fetch.php?media=dosimetry:userguide:thinknode.cpp

2026/01/25 13:11 2/16 thinknode™ Examples

// Curl get request call back
static size t WriteCallback(void *contents, size t size, size t nmemb, void
*userp

// Select a specific json tag into string
string get json value(string json, string id, int num = 0

// Curllib get http request
string do curl get(string auth, string url

// Curllib post http request
string do_curl post(string auth, string json, string url

// Handles http request to get the user ID from the basic user
string get user token

// Handles http request for realm id
string get realm id(string token

// Handles http request for context id
string get context id(std::map<string, string> config

// API Authentication
std: :map<string, string> authenticate

// Grab and post the specified calc request
void post calc request

// Grab and post sepcified object to the ISS
void post immutable object

int main(void

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:11 3/16 thinknode™ Examples

C++: Immutable Storage

The below example is a function in the thinknode.cpp class to post an immutable object to the dosimetry
app on the thinknode™ framework. This example can be used for any immutable storage post using any
datatype by replacing the json iss file.

Dependencies:
e compute_aperture_creation_params.json

void post immutable object

// Immutable info

string path = "C:\\"; // Path of folder
json file is located in

string sjon iss file = "aperture creation params.json"; // local json
object file

string obj name = "aperture creation params"; // app named type

std: :map<string, string> iam = authenticate();

// Read local immutable json file

std::ifstream json file((path + sjon iss file).c str ;

string str((std::istreambuf iterator<char>(json file)),
std::istreambuf iterator<char> ;

// Post object
std::cout << "Posting Object to ISS..." << std::endl;
string authentication string = "Authorization : Bearer " +
iam["user token"];
string res = do curl post
authentication string,
str,
api url + "/iss/named/" + app_name + "/" + obj name + "/7?context=" +
iam["context id"]);
std::cout << "Immuntable ID: " << res << std::endl;

Returns:

1. The ID (in json) of the object stored in Immutable Storage.
C++: Calculation Request

The below example is a function in the thinknode.cpp class to post a calculation request to dosimetry.

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=dosimetry:userguide:aperture_creation_params.json

2026/01/25 13:11 4/16 thinknode™ Examples

This example can be used for any calculation request using any datatype by replacing the calculation
request json file. This request will post a calculation request, check the status using long polling with a
specified timeout, and return the calculation result.

Dependencies:
e compute_aperture.json

void post calc request

// Request info

string path = "C:\\"; // Path of folder json
file is located in

string sjon iss file = "compute aperture.json"; // local json calc
request

std: :map<string, string> iam = authenticate();

std::ifstream json file((path + sjon iss file).c str ;
string str((std::istreambuf iterator<char>(json file)),
std::istreambuf iterator<char> ;

string authentication string = "Authorization : Bearer " +
iam["user token"];

// Get calculation id

std::cout << "Sending Calculation..." << std::endl;

string calculation id = get json value
do curl post(authentication string,
str, api url + "/calc/?context=" + iam["context id"]),
“id");

// Get calculation Status - using long polling
std::cout << "Checking Calculation Status..." << std::endl;
string calculation status = get json value
do curl get(authentication string,
api url + "/calc/" + calculation id +
"/status/?status=completed&progress=1&timeout=5"),

Iltypell ;
calculation status.find("failed") != string::npos

std::cout << "Server Responded: " << calculation_status << std::endl;

’

// Get calculation Result
std::cout << "Fetching Calculation Result..." << std::endl;
string calculation result = do curl get

authentication string,

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=dosimetry:userguide:compute_aperture.json

2026/01/25 13:11 5/16 thinknode™ Examples

api url + "/calc/" + calculation id + "/result/?context=" +
iam["context id"]);

std::cout << "Calculation Result: " << calculation result << std::endl;

Returns:

1. The calculation result (in json) of the API function called.

Python

The provided python scripts and libraries are meant to be a foundation and starting point for using the
astroid Dosimetry app on the thinknode™ framework. The provided scripts outline the basics of using ISS
to store objects, as well as constructing and making calculation requests to the calculation provider. The
below sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.
thinknode.cfg

There is a simple configuration file (thinknode.cfg) that is used to store user data for connecting to the
Dosimetry app on the thinknode™ framework. This file is required by all scripts in the python
astroid_script_library to authenticate and use the Dosimetry app. A sample file with no user data is
available in the repository and the details of the information to include in the file are provided below.

e basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.

e api_url being the connection string to the thinknode™ framework.

e app_name being the current app name (e.g. dosimetry).

* app_version being the current version of dosimetry existing on the thinknode™ framework being
used.

thinknode.cfg

{
"basic _user": "<Base64 encoded username:password>",
"api url": "https://api.thinknode.com/v1.0",
“app_name": "dosimetry",
"app_version": "1.0.0.0",
"realm name": "Realm Name"

}

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library
http://www.developers.thinknode.com
http://www.developers.thinknode.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=3

2026/01/25 13:11 6/16 thinknode™ Examples

Python: Immutable Storage

Post Generic ISS Object

The post_iss_object_generic.py is a basic python script that provides an example to post any dosimetry
type as an immutable object to the dosimetry app on the thinknode™ framework. This example can be
used for any immutable storage post using any datatype by replacing the json iss file. The current
example posts an aperture_creation_params datatype object that is read in from the
aperture_creation_params.json data file.

Dependencies:

e thinknode.cfg

e .decimal Python Libraries

e compute_aperture_creation_params.json (or any other prebuilt json file of a dosimetry object as
described in the Dosimetry Manifest Guide)

post_iss_object_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post an immutable json object to the thinknode framework

lib thinknode worker thinknode
lib decimal logging dl
requests
json

iss dir = "iss files"
json iss file "aperture creation params.json"
obj name "aperture creation params”

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

App object to post to iss
open(iss dir + '/' + json iss file data file:
json data = json.load(data file

Post immutable object to ISS
res = thinknode.post immutable(iam, json data, obj name
dl.data("Immutable id: ", res.text

Returns:

1. The ID (in json) of the object stored in Immutable Storage.

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=4

2026/01/25 13:11 7/16 thinknode™ Examples

Python: Calculation Request

Generic Calc Request

The post_calc_request _generic.py is a basic example to post a calculation request to dosimetry. This
example can be used for any calculation request using any datatype by replacing the calculation request
json file. This request will post a calculation request, check the status using long polling with a specified

timeout, and return the calculation result.
Dependencies:

e thinknode.cfg
e .decimal Python Libraries
e compute_aperture.json (or any other prebuilt json file of a dosimetry object as described in the

Dosimetry Manifest Guide)

post_calc_request_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post a json calculation request to the thinknode framework

lib thinknode worker thinknode
lib decimal logging dl
requests
json

request dir = "request files"
json calc file “compute aperture.json"

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

App calculation request
open(request dir + '/' + json_calc_file data file:
json data = json.load(data file

Send calc request and wait for answer
res = thinknode.do calculation(iam, json data, True
dl.data("Calculation Result: ", res.text

Returns:

1. The calculation result (in json) of the API function called.

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=5

2026/01/25 13:11 8/16 thinknode™ Examples

SOBP Dose Calculation

The post_calc_request sobp dose.py and post calc_request sobp _dose with shifter.py are more
complete examples that create input data and perform an sobp dose calculation function request to the
dosimetry app on the thinknode™ framework.

The post_calc_request sobp _dose.py example creates the entire calculation request inline using
thinknode structure, array, and function requests. The entire dose calculation request is performed using
one thinknode calculation provider call. While this structure of a request is a little more complicated to
setup and perform, it removes the need to post to ISS or perform ancillary calculations separately.

The post_calc_request sobp_dose_with_shifter.py adds in the complication of adding a degrader to the
sobp calculation. This example performs three separate calculation requests. The first two requests are
used to construct the proton degrader_geometry and the third performs the actual dose calculation
request using the previously constructed degrader. The entire example could be condensed into a single
more complicated thinknode calculation structure, eliminating the need to perform the separate
requests, but in some instances it can be more straight-forward to perform some of the calculations
separately as shown. As seen in the example, the first two calculation results for the proton degrader are
what is placed into the sobp calculation request, instead of the actual function calls as was done in the
case of the aperture in the previous example.

Dependencies:

¢ thinknode.cfg
e .decimal Python Libraries

Example

Below is an abbreviated version of the post calc_request_sobp_dose.py file. The abbreviated sections are
denoted as “...". In the below sample, the dose_calc variable is a thinknode function request that is made
of individually constructed arguments. Notice how the compute_aperture() thinknode request function is
created using the aperture _creation_params class defined in the dosimetry_types module allowing for
easier dosimetry type creation and code readability. Also note that aparams.view is comprised of another
class, multiple_source view, defined from the dosimetry types module.

e Modules used and explanation:

o The dosimetry _types (dt) module is a class library of all the dosimetry data types as
described in the Dosimetry Manifest Guide. This library provides easier manual construction
of the dosimetry data types.

o The thinknode _worker (thinknode) module is a library that provides worker functions for
performing and building the authentication, iss, and calculation requests to the thinknode
framework.

o The decimal_logger (dl) module is a library that provides nicely formatted log output. This
includes optional file logging, timestamps, and message coloring (when run through
command windows).

Refer to the .decimal Libraries section for more information on the provided decimal libraries.

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com

2026/01/25 13:11 9/16 thinknode™ Examples

json
lib thinknode worker thinknode
lib decimal logging dl
lib rt types rt types

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

make grid(corner, size, spacing

make water phantom(corner, size, spacing
\
thinknode.function("dosimetry", "create uniform image on grid 3d"

make grid(corner, size, spacing
thinknode.value
thinknode.value("relative stopping_ power"

make dose points(pointCount

get example sobp machine(id

make layers(sad, range, mod

make target

\
thinknode.function("dosimetry", "make cube"

thinknode.value(| - = -
thinknode.value =

make view

ds rt types.box 2d
ds.corner - -
ds.size

mv rt_types.multiple source view
mv.display surface = ds

mv.center

mv.direction

mv.distance

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:11 10/16 thinknode™ Examples

mv.up 0, 0, 1
mv

compute aperture
ap _params rt types.aperture creation params

ap _params.targets.append(thinknode. reference("55802bcf49400020000c"))
Use existing ISS target

ap_params.targets.append(make target

Make aperture creation params

args
args|"targets” thinknode.array named type("rt types", "triangle mesh"
ap_params.targets
args|"target margin" thinknode.value(20.0
args|"view" thinknode.value(thinknode.to json(make view
args["mill radius" thinknode.value (0.0
args|"organs" thinknode.value(ap params.organs
args["half planes” thinknode.value(ap params.half planes
args|"corner planes" thinknode.value(ap params.corner planes
args|"centerlines" thinknode.value(ap params.centerlines
args|"overrides" thinknode.value(ap params.overrides
args/["downstream edge" thinknode.value(250.5
\
thinknode.function("dosimetry", "compute aperture"

thinknode.structure named type("rt types"
"aperture creation params", args

beam geometry = \

Call compute sobp pb dose2
dose calc = \
thinknode.function("dosimetry", "compute sobp pb dose2"

make water phantom([-100, -100, -100 200, 200, 200 2, 2
2 #stopping power image

thinknode.value(make dose points(181 # dose points

beam geometry, #beam geometry

make grid([-75, -75 150, 150 2, 2 # bixel grid

make layers(2270.0, 152.0, 38.0

compute aperture # aperture based on targets

thinknode.value([proton degr!|) # degraders

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:11 11/16 thinknode™ Examples

Perform calculation
res = thinknode.do calculation(iam, dose calc, id
dl.data("Calculation Result: ", res.text

Python: decimal Libraries
rt_types

The rt_types module is a reconstruction of astroid manifest types in python class format. This includes
interdependencies between types (e.g. the class “aperture_creation_params.view” requires the class
“multiple_source_view").

Each data type detailed in the Dosimetry Manifest Guide has a corresponding class in this python
module.

Below you will see as snippet from the rt_types module that shows the class for the
aperture_creation_params dosimetry type along with its default initializations and .out function.

¢ Interdependence: When dosimetry data types are constructed of other or multiple dosimetry
types, they will be constructed as such in each class as displayed by the view parameter of the
aperture_creation_params in this example. The sobp dose calculation sample python script
provides an example of this usage in actual practice.

 out function: Each class's .out function provides an ordered dictionary of each of the values in the
class. This is explicitly an ordered dictionary since when calling a function in a calculation request,
the order of the values provided matters if constructing the request by thinknode value type.

aperture creation params(object

#Initialize
__init (self
self.targets
self.target margin
self.view = multiple source view
self.mill radius
self.organs
self.half planes
self.corner planes
self.centerlines
self.overrides
self.downstream edge

expand data(self
data
target
X self.targets:

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com

2026/01/25 13:11 12/16 thinknode™ Examples

s = triangle mesh
s.from json(x
target.append(s.expand data
datal 'targets' target
datal 'target margin' self.target margin
datal 'view' self.view.expand data
data['mill radius’ self.mill radius
organ
X self.organs:
S aperture organ
s.from json(x
organ.append(s.expand data
datal 'organs' organ
half plane
X self.half planes:
s = aperture half plane
s.from json(x
half plane.append(s.expand data

datal 'half planes’ half plane
corner_plane
X self.corner planes:

s = aperture corner plane
s.from json(x
corner plane.append(s.expand data

datal 'corner planes’ corner_plane
centerline
X self.centerlines:

s = aperture centerline

s.from json(x

centerline.append(s.expand data
data['centerlines’ centerline
override

X self.overrides:

s = aperture manual override

s.from json(x

override.append(s.expand data

datal 'overrides' override
data['downstream edge' self.downstream edge
data

from json(self, jdict

k, v jdict.items
hasattr(self k):
k 'view':

self.view.from json(v

setattr(self, k, v

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:11 13/16 thinknode™ Examples

thinknode_worker

The thinknode_worker module is the main work horse for communication with the dosimetry app and
thinknode. The module will handle authentication, posting objects to ISS, creating most of the common
calculation request structures, and posting the calculation request.

Refer to the .decimal GitHub repository for the complete module. Below are a few of the more common
thinknode http worker and their intended usages:

Authenticate with thinknode and store necessary 1ids
Gets the realm id, bucket id, and context id for the current iam
configuration
param config: connection settings (url and unique basic user
authentication)

authenticate(config

Send calculation request to thinknode api
param config: connection settings (url, user token, and ids for context
and realm)
param json data: calculation request in json format
param return data: True = returns calculation result; False = returns
calculation id

do calculation(config, json data, return data=True):

Post immutable object to ISS

param config: connection settings (url, user token, and ids for context
and realm)
param json data: immutable object in json format
param obj name: object name of app to post to
post immutable(config, json data, obj name

Post immutable object to ISS
param config: connection settings (url, user token, and ids for context
and realm)
param obj id: thinknode iss reference id for object to get
get immutable(config, obj id

decimal_logging

The decimal_logging module provides formatted and detailed output window and file logging.

The following settings are available in the decimal_logging.py file: display_timestamps: display
timestamps in the output window/logdfile display_types: display message types (e.g. debug, data, alert)
in the output window/logfile log_file: sets the logfile name and location

The following image shows the logging settings for each message type as:

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library

2026/01/25 13:11

14/16

thinknode™ Examples

1. Timestamps = True; Types = True
2. Timestamps = False; Types = True
3. Timestamps = False; Types = False

Node.js

imal

-- MESSAGE: dec e
» decimal debug <<<

-- DEBUMG:

[~

Il WARNING: decimal warning

@ ®

VEN decimal ewvent

2l -- DATA: decimal debug_data

Fud Pl Pud Pl Pud [l Pl

B o

-- MESSAGE: decimal message
-- DEBUG: »»» decimal debug

'l WARNING: decimal warning
VEN Ae i"l 1 rent

-- DATA: decimal debug data

data

decimal
decimal

decimal warning

decimal event

decimal

The following section contains examples using node.js and (if applicable) the specified modules. These
examples are for a high level approach to encoding and decoding the blob data that is part of the
Dosimetry App calculation request.

Base64 Blob Format

The blob returned by a calculation request is formatted as such:

//
//
//
//
//
//
//
//

value type enum definitions

Nil = 0;
Boolean = 1;
Number = 2;
String = 3;
Blob = 4;
List = 5;
Record = 6;

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:11 15/16 thinknode™ Examples

// For value types nil, boolean, number, string
// <uint32 value type enum (4 bytes)><data>

// For value types blob, list, record
// <uint31 value type enum (4 bytes)><size of each data (8 bytes)><data>

Node: Decrypt Base64 Blob Data

The following example shows , using node.js, how to decode the base64 encoded data returned by a
calculation request.

// The below base64string is a blob array with the values [-25, -25, 25, -25,
25, 25, -25, 25]

b64string "CF2H10z_eJxjYWBgcGBABpYHOGgHHHWMcQDM7AYN"

// The below base64string is a number set to the value 25.1
//var b64string = "NztmHgz eJxjYmBgmDUTCCQtHQATFwOT";

buf Buffer(b64string, 'base64’
zlib require(‘'zlib’

read base 255 number(buf, offset
n 0
S 0
while (offset buf.length
digit buf|offset
value = buf.readUInt8(offset

offset
S
digit.toString(16 "
n n 255
n value
S, n

size read base 255 number(buf, 4

zlib.unzip(buf.slice(4 + sizel[0 err, data
err
err

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:11 16/16 thinknode™ Examples

value type = data.readUInt32LE

// Number
value type
console.log("DOUBLE", data.readDoublelLE

// Blob
value type
// Read size here
values
i i < data.length; 1

values.push(data.readDoublelLE(1i

console.log(values); // Outputs: [-25, -25, 25, -25, 25, 25, -25, 25

]
USR-001
.decimal LLC, 121 Central Park Place,
Sanford, FL. 32771
From:

http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:

Last update: 2021/07/29 18:21

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:thinknode&rev=1436532625

	thinknode™ Examples
	C++
	thinknode.cpp
	C++: Immutable Storage
	C++: Calculation Request

	Python
	thinknode.cfg
	Python: Immutable Storage
	Post Generic ISS Object

	Python: Calculation Request
	Generic Calc Request
	SOBP Dose Calculation
	Example

	Python: decimal Libraries
	rt_types
	thinknode_worker
	decimal_logging

	Node.js
	Node: Decrypt Base64 Blob Data

