
2026/01/25 13:12 1/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python. Any further
dependencies are listed along with the provided scripts.

Python

Overview

The provided python scripts and libraries are meant to be a foundation and starting point for using the
astroid apps on the thinknode™ framework. The provided scripts outline the basics of using ISS to store
objects, as well as constructing and making calculation requests to the calculation provider. The below
sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.

thinknode.cfg

There is a simple configuration file (thinknode.cfg) that is used to store user data for connecting to the
astroid app on the thinknode™ framework. This file is required by all scripts in the python
astroid_script_library to authenticate and use the app. A sample file with no user data is available in the
repository and the details of the information to include in the file are provided below.

basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.
api_url being the connection string to the thinknode™ framework.
app_name being the current app name (e.g. dosimetry or dicom).
app_version being the current version of the app existing on the thinknode™ framework being
used.

thinknode.cfg

{
 "basic_user": "<Base64 encoded username:password>",
 "api_url": "https://api.thinknode.com/v1.0",
 "app_name": "dosimetry",
 "app_version": "1.0.0.0",
 "realm_name": "Realm Name"
}

https://github.com/dotdecimal/astroid-script-library
http://www.developers.thinknode.com
http://www.developers.thinknode.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=0

2026/01/25 13:12 2/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

Python: Immutable Storage

Post Generic ISS Object

The post_iss_object_generic.py is a basic python script that provides an example to post any dosimetry
type as an immutable object to the dosimetry app on the thinknode™ framework. This example can be
used for any immutable storage post using any datatype by replacing the json iss file. The current
example posts an aperture_creation_params datatype object that is read in from the
aperture_creation_params.json data file.

Dependencies:

thinknode.cfg
.decimal Python Libraries
compute_aperture_creation_params.json (or any other prebuilt json file of a dosimetry object as
described in the Dosimetry Manifest Guide)

post_iss_object_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post an immutable json object to the thinknode framework

from lib import thinknode_worker as thinknode
from lib import decimal_logging as dl
import requests
import json

iss_dir = "iss_files"
json_iss_file = "aperture_creation_params.json"
obj_name = "aperture_creation_params"

Get IAM ids
iam = thinknode.authenticate(thinknode.read_config('thinknode.cfg'))

App object to post to iss
with open(iss_dir + '/' + json_iss_file) as data_file:
 json_data = json.load(data_file)

Post immutable object to ISS
res = thinknode.post_immutable(iam, json_data, obj_name)
dl.data("Immutable id: ", res.text)

Returns:

The ID (in json) of the object stored in Immutable Storage.1.

http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=1

2026/01/25 13:12 3/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

Python: Calculation Request

Generic Calc Request

The post_calc_request_generic.py is a basic example to post a calculation request to dosimetry. This
example can be used for any calculation request using any datatype by replacing the calculation request
json file. This request will post a calculation request, check the status using long polling with a specified
timeout, and return the calculation result.

Dependencies:

thinknode.cfg
.decimal Python Libraries
compute_aperture.json (or any other prebuilt json file of a dosimetry object as described in the
Dosimetry Manifest Guide)

post_calc_request_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post a json calculation request to the thinknode framework

from lib import thinknode_worker as thinknode
from lib import decimal_logging as dl
import requests
import json

request_dir = "request_files"
json_calc_file = "compute_aperture.json"

Get IAM ids
iam = thinknode.authenticate(thinknode.read_config('thinknode.cfg'))

App calculation request
with open(request_dir + '/' + json_calc_file) as data_file:
 json_data = json.load(data_file)

Send calc request and wait for answer
res = thinknode.do_calculation(iam, json_data, True)
dl.data("Calculation Result: ", res.text)

Returns:

The calculation result (in json) of the API function called.1.

http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=2

2026/01/25 13:12 4/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

SOBP Dose Calculation

The post_calc_request_sobp_dose.py and post_calc_request_sobp_dose_with_shifter.py are more
complete examples that create input data and perform an sobp dose calculation function request to the
dosimetry app on the thinknode™ framework.

The post_calc_request_sobp_dose.py example creates the entire calculation request inline using
thinknode structure, array, and function requests. The entire dose calculation request is performed using
one thinknode calculation provider call. While this structure of a request is a little more complicated to
setup and perform, it removes the need to post to ISS or perform ancillary calculations separately.

The post_calc_request_sobp_dose_with_shifter.py adds in the complication of adding a degrader to the
sobp calculation. This example performs three separate calculation requests. The first two requests are
used to construct the proton degrader_geometry and the third performs the actual dose calculation
request using the previously constructed degrader. The entire example could be condensed into a single
more complicated thinknode calculation structure, eliminating the need to perform the separate
requests, but in some instances it can be more straight-forward to perform some of the calculations
separately as shown. As seen in the example, the first two calculation results for the proton degrader are
what is placed into the sobp calculation request, instead of the actual function calls as was done in the
case of the aperture in the previous example.

Dependencies:

thinknode.cfg
.decimal Python Libraries

Example

Below is an abbreviated version of the post_calc_request_sobp_dose.py file. The abbreviated sections are
denoted as “…”. In the below sample, the dose_calc variable is a thinknode function request that is made
of individually constructed arguments. Notice how the compute_aperture() thinknode request function is
created using the aperture_creation_params class defined in the dosimetry_types module allowing for
easier dosimetry type creation and code readability. Also note that aparams.view is comprised of another
class, multiple_source_view, defined from the dosimetry_types module.

Modules used and explanation:
The dosimetry_types (dt) module is a class library of all the dosimetry data types as
described in the Dosimetry Manifest Guide. This library provides easier manual construction
of the dosimetry data types.
The thinknode_worker (thinknode) module is a library that provides worker functions for
performing and building the authentication, iss, and calculation requests to the thinknode
framework.
The decimal_logger (dl) module is a library that provides nicely formatted log output. This
includes optional file logging, timestamps, and message coloring (when run through
command windows).

Refer to the .decimal Libraries section for more information on the provided decimal libraries.

http://docs.apps.dotdecimal.com

2026/01/25 13:12 5/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

import json
from lib import thinknode_worker as thinknode
from lib import decimal_logging as dl
from lib import rt_types as rt_types

Get IAM ids
iam = thinknode.authenticate(thinknode.read_config('thinknode.cfg'))

def make_grid(corner, size, spacing):
...

def make_water_phantom(corner, size, spacing):
 return \
 thinknode.function("dosimetry", "create_uniform_image_on_grid_3d",
 [
 make_grid(corner, size, spacing),
 thinknode.value(1),
 thinknode.value("relative_stopping_power")
])

def make_dose_points(pointCount):
...

def get_example_sobp_machine(id):
...

def make_layers(sad, range, mod):
...

def make_target():
 return \
 thinknode.function("dosimetry", "make_cube",
 [
 thinknode.value([-32, -20, -30]),
 thinknode.value([16, -10, 30])
])

def make_view():
 ds = rt_types.box_2d()
 ds.corner = [-100, -100]
 ds.size = [200, 200]

 mv = rt_types.multiple_source_view()
 mv.display_surface = ds
 mv.center = [0, 0, 0]
 mv.direction = [0, 1, 0]
 mv.distance = [2270, 2270]

2026/01/25 13:12 6/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

 mv.up = [0, 0, 1]

 return mv

def compute_aperture():
 ap_params = rt_types.aperture_creation_params()

 # ap_params.targets.append(thinknode.reference("55802bcf49400020000c")) #
Use existing ISS target
 ap_params.targets.append(make_target())

 # Make aperture_creation_params
 args = {}
 args["targets"] = thinknode.array_named_type("rt_types", "triangle_mesh",
ap_params.targets)
 args["target_margin"] = thinknode.value(20.0)
 args["view"] = thinknode.value(thinknode.to_json(make_view()))
 args["mill_radius"] = thinknode.value(0.0)
 args["organs"] = thinknode.value(ap_params.organs)
 args["half_planes"] = thinknode.value(ap_params.half_planes)
 args["corner_planes"] = thinknode.value(ap_params.corner_planes)
 args["centerlines"] = thinknode.value(ap_params.centerlines)
 args["overrides"] = thinknode.value(ap_params.overrides)
 args["downstream_edge"] = thinknode.value(250.5)

 return \
 thinknode.function("dosimetry", "compute_aperture",
 [
 thinknode.structure_named_type("rt_types",
"aperture_creation_params", args)
])

beam_geometry = \
...

Call compute_sobp_pb_dose2
dose_calc = \
 thinknode.function("dosimetry", "compute_sobp_pb_dose2",
 [
 make_water_phantom([-100, -100, -100], [200, 200, 200], [2, 2,
2]), #stopping_power_image
 thinknode.value(make_dose_points(181)), # dose_points
 beam_geometry, #beam_geometry
 make_grid([-75, -75], [150, 150], [2, 2]), # bixel_grid
 make_layers(2270.0, 152.0, 38.0),
 compute_aperture(), # aperture based on targets
 thinknode.value([proton_degr]) # degraders
])

2026/01/25 13:12 7/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

Perform calculation
res = thinknode.do_calculation(iam, dose_calc, id)
dl.data("Calculation Result: ", res.text)

Python: decimal Libraries

rt_types

The rt_types module is a reconstruction of astroid manifest types in python class format. This includes
interdependencies between types (e.g. the class “aperture_creation_params.view” requires the class
“multiple_source_view”).

Each data type detailed in the astroid Manifest Guide has a corresponding class in this python module.

Below you will see as snippet from the rt_types module that shows the class for the
aperture_creation_params rt_type along with its default initializations and .out function.

Interdependence: When rt_types are constructed of other or multiple named types, they will be
constructed as such in each class as displayed by the view parameter of the
aperture_creation_params in this example. The sobp dose calculation sample python script
provides an example of this usage in actual practice.
out function: Each class's .out function provides an ordered dictionary of each of the values in the
class. This is explicitly an ordered dictionary since when calling a function in a calculation request,
the order of the values provided matters if constructing the request by thinknode value type.

class aperture_creation_params(object):

 #Initialize
 def __init__(self):
 self.targets = []
 self.target_margin = 0.0
 self.view = multiple_source_view()
 self.mill_radius = 0.0
 self.organs = []
 self.half_planes = []
 self.corner_planes = []
 self.centerlines = []
 self.overrides = []
 self.downstream_edge = 0.0

 def expand_data(self):
 data = {}
 target = []
 for x in self.targets:
 s = triangle_mesh()

http://docs.apps.dotdecimal.com

2026/01/25 13:12 8/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

 s.from_json(x)
 target.append(s.expand_data())
 data['targets'] = target
 data['target_margin'] = self.target_margin
 data['view'] = self.view.expand_data()
 data['mill_radius'] = self.mill_radius
 organ = []
 for x in self.organs:
 s = aperture_organ()
 s.from_json(x)
 organ.append(s.expand_data())
 data['organs'] = organ
 half_plane = []
 for x in self.half_planes:
 s = aperture_half_plane()
 s.from_json(x)
 half_plane.append(s.expand_data())
 data['half_planes'] = half_plane
 corner_plane = []
 for x in self.corner_planes:
 s = aperture_corner_plane()
 s.from_json(x)
 corner_plane.append(s.expand_data())
 data['corner_planes'] = corner_plane
 centerline = []
 for x in self.centerlines:
 s = aperture_centerline()
 s.from_json(x)
 centerline.append(s.expand_data())
 data['centerlines'] = centerline
 override = []
 for x in self.overrides:
 s = aperture_manual_override()
 s.from_json(x)
 override.append(s.expand_data())
 data['overrides'] = override
 data['downstream_edge'] = self.downstream_edge
 return data

 def from_json(self, jdict):
 for k, v in jdict.items():
 if hasattr(self,k):
 if k == 'view':
 self.view.from_json(v)
 else:
 setattr(self, k, v)

2026/01/25 13:12 9/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

thinknode_worker

The thinknode_worker module is the main work horse for communication with the astroid app and
thinknode. The module will handle authentication, posting objects to ISS, creating most of the common
calculation request structures, and posting the calculation request.

Refer to the .decimal GitHub repository for the complete module. Below are a few of the more common
thinknode http worker and their intended usages:

Authenticate with thinknode and store necessary ids
Gets the realm_id, bucket_id, and context_id for the current iam
configuration
param config: connection settings (url and unique basic user
authentication)
def authenticate(config):

Send calculation request to thinknode api
param config: connection settings (url, user token, and ids for context
and realm)
param json_data: calculation request in json format
param return_data: True = returns calculation result; False = returns
calculation id
def do_calculation(config, json_data, return_data=True):

Post immutable object to ISS
param config: connection settings (url, user token, and ids for context
and realm)
param json_data: immutable object in json format
param obj_name: object name of app to post to
def post_immutable(config, json_data, obj_name):

Post immutable object to ISS
param config: connection settings (url, user token, and ids for context
and realm)
param obj_id: thinknode iss reference id for object to get
def get_immutable(config, obj_id):

decimal_logging

The decimal_logging module provides formatted and detailed output window and file logging.

The following settings are available in the decimal_logging.py file: display_timestamps: display
timestamps in the output window/logfile display_types: display message types (e.g. debug, data, alert)
in the output window/logfile log_file: sets the logfile name and location

The following image shows the logging settings for each message type as:

https://github.com/dotdecimal/astroid-script-library

2026/01/25 13:12 10/10 thinknode™ Examples

decimal App Documentation - http://apps.dotdecimal.com/

Timestamps = True; Types = True1.
Timestamps = False; Types = True2.
Timestamps = False; Types = False3.

USR-001

.decimal LLC, 121 Central Park Place,
Sanford, FL. 32771

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:
http://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:thinknode&rev=1436537663

Last update: 2021/07/29 18:21

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:thinknode&rev=1436537663

	thinknode™ Examples
	Python
	Overview
	thinknode.cfg

	Python: Immutable Storage
	Post Generic ISS Object

	Python: Calculation Request
	Generic Calc Request
	SOBP Dose Calculation
	Example

	Python: decimal Libraries
	rt_types
	thinknode_worker
	decimal_logging

