2026/01/25 13:04 1/11 thinknode™ Examples

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python. Any further
dependencies are listed along with the provided scripts.

Python

Python: Overview

The provided python scripts and libraries are meant to be a foundation and starting point for using the

astroid apps on the thinknode™ framework. The provided scripts outline the basics of using ISS to store
objects, as well as constructing and making calculation requests to the calculation provider. The below

sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.
thinknode.cfg

There is a simple configuration file (thinknode.cfg) that is used to store user data for connecting to the
astroid app on the thinknode™ framework. This file is required by all scripts in the python
astroid_script_library to authenticate and use the app. A sample file with no user data is available in the
repository and the details of the information to include in the file are provided below.

e basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.
e api_url being the connection string to the thinknode™ framework.
* apps
o app_name being the current app name (e.g. dosimetry or dicom).
= app_version being the current version of the app existing on the thinknode™
framework being used. If left blank the thinknode_worker will select the first app's
version returned by the Realm Versions GET request.
» branch_name not currently implemented
e realm_name thinknode realm
e account_name thinknode account name

thinknode.cfg
{

"basic user": "<Base64 encoded thinknode username:password>",
"api url": "https://<thinknode account>.thinknode.io/api/v1.0",

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library
http://www.developers.thinknode.com
http://www.developers.thinknode.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=0

2026/01/25 13:04 2/11 thinknode™ Examples

Ilappsll:
{
“dosimetry":
{
"app _version": "1.0.0-betal",
"branch name": "master"
H
“dicom":
{
"app_version": "",
"branch _name": "master"
H
"rt_types":
{
“app_version": "",
"branch _name": "master"
}
¥
“realm name": "<thinknode realm>",
"account name": "<thinknode account>"

Python: Immutable Storage

Post Generic ISS Object

The post_iss_object _generic.py is a basic python script that provides an example to post any dosimetry
type as an immutable object to the dosimetry app on the thinknode™ framework. This example can be
used for any immutable storage post using any datatype by replacing the json iss file. The current
example posts an rt_study DICOM App datatype object that is read in from the study.json data file.

Dependencies:

¢ thinknode.cfg

e .decimal Python Libraries

e study.json (or any other prebuilt json file of a dosimetry object as described in the Apps Manifest
Guide)

post iss_object_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post an immutable json object to the thinknode framework

lib thinknode worker thinknode

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com
http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=1

2026/01/25 13:04 3/11 thinknode™ Examples

requests
json

iss dir = "iss files"

json iss file "study.json"
obj name "rt study"”

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

App object to post to iss
open(iss dir + '/' + json iss file data file:
json data = json.load(data file

Post immutable object to ISS
res = thinknode.post immutable named(iam, "dicom", json data, obj name

Returns:

1. The ID (in json) of the object stored in Immutable Storage.
Python: Calculation Request

Generic Calc Request

The post_calc_request _generic.py is a basic example to post a calculation request to dosimetry. This
example can be used for any calculation request using any datatype by replacing the calculation request
json file. This request will post a calculation request, check the status using long polling with a specified
timeout, and return the calculation result.

Dependencies:

e thinknode.cfg

e .decimal Python Libraries

e compute_aperture.json (or any other prebuilt json file of a dosimetry object as described in the
Dosimetry Manifest Guide)

post _calc_request_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.

Desc: Post a json calculation request to the thinknode framework
lib thinknode worker thinknode
lib decimal logging dl

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=2

2026/01/25 13:04 4/11 thinknode™ Examples

requests
json
request dir "request files"
json calc file "compute aperture.json"

Get IAM ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

App calculation request
open(request dir + '/' + json calc file data file:
json data = json.load(data file

Send calc request and wait for answer
res = thinknode.do calculation(iam, json data, True
dl.data("Calculation Result: ", res.text

Returns:

1. The calculation result (in json) of the API function called.

SOBP Dose Calculation

The post_calc request sobp dose.py and post calc_request sobp_dose with shifter.py are more
complete examples that create input data and perform an sobp dose calculation function request to the
dosimetry app on the thinknode™ framework.

The post_calc_request sobp _dose.py example creates the entire calculation request inline using
thinknode structure, array, and function requests. The entire dose calculation request is performed using
one thinknode calculation provider call. While this structure of a request is a little more complicated to
setup and perform, it removes the need to post to ISS or perform ancillary calculations separately.

The post calc _request sobp_dose with_shifter.py adds in the complication of adding a degrader to the
sobp calculation. This example performs three separate calculation requests. The first two requests are
used to construct the proton degrader_geometry and the third performs the actual dose calculation
request using the previously constructed degrader. The entire example could be condensed into a single
more complicated thinknode calculation structure, eliminating the need to perform the separate
requests, but in some instances it can be more straight-forward to perform some of the calculations
separately as shown. As seen in the example, the first two calculation results for the proton degrader are
what is placed into the sobp calculation request, instead of the actual function calls as was done in the
case of the aperture in the previous example.

Dependencies:

¢ thinknode.cfg
e .decimal Python Libraries

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:04 5/11 thinknode™ Examples

Example

Below is an abbreviated version of the post calc_request_sobp_dose.py file. The abbreviated sections are
denoted as “..."”. In the below sample, the dose calc variable is a thinknode function request that is made
of individually constructed arguments. Notice how the compute_aperture() thinknode request function is
created using the aperture _creation_params class defined in the dosimetry types module allowing for
easier dosimetry type creation and code readability. Also note that aparams.view is comprised of another
class, multiple_source view, defined from the dosimetry_types module.

e Modules used and explanation:

o The dosimetry_types (dt) module is a class library of all the dosimetry data types as
described in the Dosimetry Manifest Guide. This library provides easier manual construction
of the dosimetry data types.

o The thinknode worker (thinknode) module is a library that provides worker functions for
performing and building the authentication, iss, and calculation requests to the thinknode
framework.

o The decimal_logger (dl) module is a library that provides nicely formatted log output. This
includes optional file logging, timestamps, and message coloring (when run through
command windows).

Refer to the .decimal Libraries section for more information on the provided decimal libraries.

json
lib thinknode worker thinknode
lib decimal logging dl
lib rt_types rt _types

Get IAM ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

make grid(corner, size, spacing
make water phantom(corner, size, spacing
\
thinknode. function("dosimetry", "create uniform image on grid 3d"
make grid(corner, size, spacing

thinknode.value
thinknode.value("relative stopping power"

make dose points(pointCount

get example sobp machine(id

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com

2026/01/25 13:04 6/11

thinknode™ Examples

Use

make layers(sad, range, mod

make target

\
thinknode.function("dosimetry", "make cube"
thinknode.value([-32, -20, -30
thinknode.value([16, -10, 30
make view
ds rt types.box 2d
ds.corner -100, -100

ds.size 200, 200

mv rt_types.multiple source view
mv.display surface = ds

mv.center 0, 0, 0

mv.direction 0, 1, 0
mv.distance 2270, 2270

mv.up 0, 0, 1

mv

compute aperture
ap _params rt types.aperture creation params

ap _params.targets.append(thinknode. reference("55802bcf49400020000c"))

existing ISS target
ap_params.targets.append(make target

Make aperture creation params

“triangle mesh"

args

args|"targets” thinknode.array named type("rt types"
ap_params.targets

args|"target margin" thinknode.value(20.0

args|"view" thinknode.value(thinknode.to json(make view

args["mill radius" thinknode.value(0.0

args|["organs" thinknode.value(ap params.organs

args|["half planes” thinknode.value(ap params.half planes

args|"corner planes" thinknode.value(ap params.corner planes

args|"centerlines" thinknode.value(ap params.centerlines

args|"overrides" thinknode.value(ap params.overrides

args|"downstream edge" thinknode.value(250.5

\

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:04 7/11 thinknode™ Examples

thinknode.function("dosimetry", "compute aperture"
thinknode.structure named type("rt types"
"aperture creation params", args

beam geometry = \

Call compute sobp pb dose2

dose calc = \
thinknode. function("dosimetry", "compute sobp pb dose2"

make water phantom(|- - -
#stopping power image

thinknode.value (make dose points # dose points
beam geometry, #beam geometry

make grid(| - - # bixel grid
make layers

compute aperture # aperture based on targets

thinknode.value([proton degr|) # degraders

Perform calculation
res = thinknode.do calculation(iam, dose calc, id
dl.data("Calculation Result: ", res

Python: decimal Libraries

rt_types

The rt_types module is a reconstruction of astroid manifest types in python class format. This includes
interdependencies between types (e.g. the class “aperture_creation_params.view” requires the class
“multiple_source_view").

Each data type detailed in the astroid Manifest Guide has a corresponding class in this python module.

Below you will see as snippet from the rt_types module that shows the class for the
aperture_creation_params rt_type along with its default initializations and .out function.

 Interdependence: When rt_types are constructed of other or multiple named types, they will be
constructed as such in each class as displayed by the view parameter of the
aperture_creation_params in this example. The sobp dose calculation sample python script

provides an example of this usage in actual practice.
e out function: Each class's .out function provides an ordered dictionary of each of the values in the

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com

2026/01/25 13:04 8/11 thinknode™ Examples

class. This is explicitly an ordered dictionary since when calling a function in a calculation request,
the order of the values provided matters if constructing the request by thinknode value type.

aperture creation params(object

#Initialize
__init (self
self.targets
self.target margin
self.view = multiple source view
self.mill radius
self.organs
self.half planes
self.corner planes
self.centerlines
self.overrides
self.downstream edge

expand data(self
data
target
X self.targets:
s = triangle mesh
s.from json(x
target.append(s.expand data
data['targets’ target
datal 'target margin' self.target margin
datal 'view' self.view.expand data
data['mill radius’ self.mill radius
organ
X self.organs:
S aperture organ
s.from json(x
organ.append(s.expand data
datal 'organs' organ
half plane
X self.half planes:
s = aperture half plane
s.from json(x
half plane.append(s.expand data

datal 'half planes’ half plane
corner_plane
X self.corner planes:

s = aperture corner plane

s.from json(x

corner plane.append(s.expand data
datal 'corner planes’ corner_plane
centerline

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:04 9/11 thinknode™ Examples

X self.centerlines:

s = aperture _centerline

s.from json(x

centerline.append(s.expand data
datal 'centerlines'’ centerline
override

X self.overrides:

s = aperture manual override

s.from json(x

override.append(s.expand data

data['overrides' override
datal 'downstream edge' self.downstream edge
data

from json(self, jdict

k, v jdict.items
hasattr(self, k):
k 'view':

self.view.from json(v

setattr(self, k, v

thinknode_worker

The thinknode_worker module is the main work horse for communication with the astroid app and
thinknode. The module will handle authentication, posting objects to ISS, creating most of the common
calculation request structures, and posting the calculation request.

Refer to the .decimal GitHub repository for the complete module. Below are a few of the more common
thinknode http worker and their intended usages:

Authenticate with thinknode and store necessary ids

Gets the realm id, bucket id, and context id for the current iam
configuration

param config: connection settings (url and unique basic user
authentication)

authenticate(config

Send calculation request to thinknode api

param config: connection settings (url, user token, and ids for context
and realm)

param json data: calculation request in json format

param return _data: True = returns calculation result; False = returns
calculation id

do calculation(config, json data, return data=True):

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library

2026/01/25 13:04 10/11

thinknode™ Examples

Post immutable object to ISS

param config: connection settings (url, user token, and ids for context

and realm)

param json data: immutable object in json format

param obj name: object name of app to post to
post immutable(config, json data, obj name):

Post immutable object to ISS

param config: connection settings (url, user token, and ids for context

and realm)

param obj id: thinknode iss reference id for object to get

get immutable(config, obj id):

decimal_logging

The decimal_logging module provides formatted and detailed output window and file logging.

The following settings are available in the decimal_logging.py file: display_timestamps: display
timestamps in the output window/logfile display_types: display message types (e.g. debug, data, alert)

in the output window/logfile log_file: sets the logfile name and location

The following image shows the logging settings for each message type as:

1. Timestamps = True; Types = True
2. Timestamps = False; Types = True
3. Timestamps = False; Types = False

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/25 13:04 11/11 thinknode™ Examples

-- MESSAGE: decimal
14 -- DEBUWG: >
14
14 !'! WARNING: decimal warning
14
14 VEN decimal
EEREFEE! - - DATA: decimal

C
d

e
debug_data

Pl Pl Pl Pod Pl Pl [l

cimal
decimal debug

-- MESSAGE: de
-- DEBUG: >>>

Il WARNIMG: decimal warning
data

decimal
decimal

decimal warning

decimal ewvent

decimal

USR-001

.decimal LLC, 121 Central Park Place,
Sanford, FL. 32771

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:

Last update: 2021/07/29 18:21

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:thinknode&rev=1443097223

	thinknode™ Examples
	Python
	Python: Overview
	thinknode.cfg

	Python: Immutable Storage
	Post Generic ISS Object

	Python: Calculation Request
	Generic Calc Request
	SOBP Dose Calculation
	Example

	Python: decimal Libraries
	rt_types
	thinknode_worker
	decimal_logging

