2025/10/19 05:47 1/11 thinknode™ Examples

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python. Any further
dependencies are listed along with the provided scripts.

Python

Python: Overview

The provided python scripts and libraries are meant to be a foundation and starting point for using the

astroid apps on the thinknode™ framework. The provided scripts outline the basics of using ISS to store
objects, as well as constructing and making calculation requests to the calculation provider. The below

sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.
thinknode.cfg

There is a simple configuration file (thinknode.cfg) that is used to store user data for connecting to the
astroid app on the thinknode™ framework. This file is required by all scripts in the python
astroid_script_library to authenticate and use the app. A sample file with no user data is available in the
repository and the details of the information to include in the file are provided below.

e basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.
e api_url being the connection string to the thinknode™ framework.
* apps
o app_name being the current app name (e.g. dosimetry or dicom).
= app_version being the current version of the app existing on the thinknode™
framework being used. If left blank the thinknode_worker will select the first app's
version returned by the Realm Versions GET request.
» branch_name not currently implemented
e realm_name thinknode realm
e account_name thinknode account name

thinknode.cfg
{

"basic user": "<Base64 encoded thinknode username:password>",
"api url": "https://<thinknode account>.thinknode.io/api/v1.0",

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library
http://www.developers.thinknode.com
http://www.developers.thinknode.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=0

2025/10/19 05:47 2/11 thinknode™ Examples

Ilappsll:
{
“dosimetry":
{
"app _version": "1.0.0-betal",
"branch name": "master"
H
“dicom":
{
"app_version": "",
"branch _name": "master"
H
"rt_types":
{
“app_version": "",
"branch _name": "master"
}
¥
“realm name": "<thinknode realm>",
"account name": "<thinknode account>"

Python: Immutable Storage

Post Generic ISS Object

The post_iss_object _generic.py is a basic python script that provides an example to post any dosimetry
type as an immutable object to the dosimetry app on the thinknode™ framework. This example can be
used for any immutable storage post using any datatype by replacing the json iss file. The current
example posts an rt_study DICOM App datatype object that is read in from the study.json data file.

Dependencies:

¢ thinknode.cfg

e .decimal Python Libraries

e study.json (or any other prebuilt json file of a dosimetry object as described in the Apps Manifest
Guide)

post iss_object_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post an immutable json object to the thinknode framework

lib thinknode worker thinknode

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com
http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=1

2025/10/19 05:47 3/11 thinknode™ Examples

requests
json
iss dir = "iss files"
json iss file "study.json"

obj name "rt study"”

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

App object to post to iss
open(iss dir + '/' + json iss file data file:
json data = json.load(data file

Post immutable object to ISS
res = thinknode.post immutable named(iam, "dicom", json data, obj name

Returns:

1. The ID (in json) of the object stored in Immutable Storage.
Python: Calculation Request

Generic Calc Request

The post_calc_request _generic.py is a basic example to post a calculation request to dosimetry. This
example can be used for any calculation request using any datatype by replacing the calculation request
json file. This request will post a calculation request, check the status using long polling with a specified
timeout, and return the calculation result.

Dependencies:

e thinknode.cfg

e .decimal Python Libraries

e compute_aperture.json (or any other prebuilt json file of a dosimetry object as described in the
Dosimetry Manifest Guide)

post _calc_request_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.

Desc: Post a json calculation request to the thinknode framework
request dir = "request files"
json calc file “compute aperture.json"

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=dosimetry:userguide:thinknode&codeblock=2

2025/10/19 05:47 4/11 thinknode™ Examples

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfqg'

App calculation request
open(request dir + '/' + json calc file data file:
json data = json.load(data file

Send calc request and wait for answer
res = thinknode.do calculation(iam, json data
dl.data("Calculation Result: ", str(res

Returns:

1. The calculation result (in json) of the API function called.

SOBP Dose Calculation

The post_calc_request sobp _dose.py and post calc_request_sobp_dose with_shifter.py are more
complete examples that create input data and perform an sobp dose calculation function request to the
dosimetry app on the thinknode™ framework.

The post_calc_request sobp_dose.py example creates the entire calculation request inline using
thinknode structure, array, and function requests. The entire dose calculation request is performed using
one thinknode calculation provider call. While this structure of a request is a little more complicated to
setup and perform, it removes the need to post to ISS or perform ancillary calculations separately.

The post _calc _request sobp_dose with_shifter.py adds in the complication of adding a degrader to the
sobp calculation. This example performs three separate calculation requests. The first two requests are
used to construct the proton degrader_geometry and the third performs the actual dose calculation
request using the previously constructed degrader. The entire example could be condensed into a single
more complicated thinknode calculation structure, eliminating the need to perform the separate
requests, but in some instances it can be more straight-forward to perform some of the calculations
separately as shown. As seen in the example, the first two calculation results for the proton degrader are
what is placed into the sobp calculation request, instead of the actual function calls as was done in the
case of the aperture in the previous example.

Dependencies:

¢ thinknode.cfg
e .decimal Python Libraries

Example

Below is an abbreviated version of the post calc_request _sobp_dose with_shifter.py file. The abbreviated

decimal App Documentation - http://apps.dotdecimal.com/

2025/10/19 05:47 5/11 thinknode™ Examples

sections are denoted as “...”. In the below sample, the dose_calc variable is a thinknode function request
that is made of individually constructed arguments. Notice how some of the elements, like degrader, can

be built upon seperate calculation requests.

e Modules used and explanation:
o The thinknode_worker (thinknode) module is a library that provides worker functions for

performing and building the authentication, iss, and calculation requests to the thinknode

framework.
o The dosimetry worker (dosimetry) module is a library that provides simplified common

dosimetry tasks.
o The decimal_logger (dl) module is a library that provides nicely formatted log output. This

includes optional file logging, timestamps, and message coloring (when run through
command windows).

Refer to the .decimal Libraries section for more information on the provided decimal libraries.

json
lib thinknode worker thinknode
lib dosimetry worker dosimetry
lib decimal logging dl

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

make dose points(pointCount

make layers(sad, range, mod

\
thinknode. function(iam|["account name" "dosimetry"

"compute double scattering layers”

thinknode.reference("55f70f5000c0a247563a909b6087ada0" #

SOBP Machine from ISS
thinknode.value(sad

thinknode.value(range
thinknode.value (mod

make target

\
thinknode. function("dosimetry", "make cube

thinknode.value(| - o -
thinknode.value =

compute aperture

decimal App Documentation - http://apps.dotdecimal.com/

2025/10/19 05:47 6/11 thinknode™ Examples

dosimetry.compute aperture(iam, make target beam geometry, 20.0
0.0, 250.5

beam geometry = \

Get degrader geometry as calculation result
degrade geom = \
thinknode. function(iam|["account name" "dosimetry", "make shifter"

thinknode.value (18 # thickness
thinknode.value("mm" # units
thinknode.value(200) # downstream edge

res _geom = thinknode.do calculation(iam, degrade geom, True
degrader = \
thinknode. function(iam|"account name" "dosimetry", "make degrader"

thinknode.value(res geom
thinknode.reference("56030a9500c036a0c6393f984b25e303") # Material
spec from ISS

proton degr = thinknode.do calculation(iam, degrader

Call compute sobp pb dose2
dose calc = \
thinknode.function("dosimetry", "compute sobp pb dose2"

dosimetry.make image 3d(iam -100, -100, -100 200, 200, 200
2, 2, 2 1), #stopping power image

thinknode.value(make dose points(181 # dose points

beam geometry, #beam geometry

dosimetry.make grid(iam -75, -75 150, 150 2, 2 #
bixel grid

make layers(2270.0, 152.0, 38.0

compute aperture # aperture based on targets

thinknode.value([proton degr!|) # degraders

Perform calculation
res = thinknode.do calculation(iam, dose calc
dl.data("Calculation Result: ", res

Python: decimal Libraries

decimal App Documentation - http://apps.dotdecimal.com/

2025/10/19 05:47 7/11 thinknode™ Examples

rt_types

The rt_types module is a reconstruction of astroid manifest types in python class format. This includes
interdependencies between types (e.g. the class “polyset” requires the class “polygon2”).

Each data type detailed in the astroid Manifest Guide has a corresponding class in this python module.

Below you will see as snippet from the rt_types module that shows the class for the polyset rt_type along
with its default initializations and .expand_data and from_json functions.

polygon2 (object):

#Initialize
__init (self):
blob = blob type
self.vertices blob.toStr

expand data(self):
data
datal 'vertices'
parse bytes 2d(base64.b64decode(self.vertices| 'blob’
data

from json(self, jdict):

k, v jdict.items

hasattr(self k):
setattr(self, k, v

polyset(object):
#Initialize
_init (self):
self.polygons
self.holes

expand data(self):

data

polygon
X self.polygons:
S polygon?2

s.from json(x
polygon.append(s.expand data

datal 'polygons’ polygon
hole

X self.holes:

S polygon?2

s.from json(x

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.apps.dotdecimal.com

2025/10/19 05:47 8/11 thinknode™ Examples

hole.append(s.expand data
datal 'holes' hole
data

from json(self, jdict
k, v jdict.items
hasattr(self k):
setattr(self, k, v

* Interdependence: When rt_types are constructed of other or multiple named types, they will be
constructed as such in each class as displayed by the polygons parameter of the polyset in this
example.

e expand_data function: Each class's .expand_data function provides an ordered dictionary of each
of the values in the class. This is explicitly an ordered dictionary since when calling a function in a
calculation request, the order of the values provided matters if constructing the request by
thinknode value type.

e from_json function: Each class's .from_json function provides a method to turn a raw json string
(e.g. a result from a thinknode calculation or ISS object) into an rt_type data type.

Below is an example usage of getting a thinknode dose image (image_3d data type in the astroid
manifest) and turning it into a rt_types image_3d data type, then using that data type to output the
image as a VTK graphics file:

dose to vtk(dose id
img data = json.loads(thinknode.get immutable(iam, 'dicom', dose id

img rt types.image 3d
img.from json(img data
img2 = img.expand data

vtk.write vtk image3('E:/dicom/dose.vtk', img2

thinknode_worker

The thinknode_worker module is the main work horse for communication with the astroid app and
thinknode. The module will handle authentication, posting objects to ISS, creating most of the common
calculation request structures, and posting the calculation request.

Refer to the .decimal GitHub repository for the complete module. Below are a few of the more common
thinknode http worker and their intended usages:

Authenticate with thinknode and store necessary 1ids.
Gets the context id for each app detailed in the thinknode config
Gets the app version (if non defined) for each app in the realm
param config: connection settings (url and unique basic user
authentication)

authenticate(config

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library

2025/10/19 05:47 9/11 thinknode™ Examples

Send calculation request to thinknode and wait for the calculation to
perform. Caches locally calculation results so if the same

calculation is performed again, the calculation

does not have to be repeatedly pulled from thinknode. Saves one calculation
time and bandwidth.

note: see post calculation if you just want the calculation ID and don't
need to wait for the calculation to finish or get results

param config: connection settings (url, user token, and ids for context
and realm)

param json data: calculation request in json format

param return data: When True the data object will be returned, when false
the thinknode id for the object will be returned

param return _error: When False the script will exit when error is found,
when True the sciprt will return the error

det do_calculation(config, json data, return data-True, return error=False):

Post immutable named type object to ISS
param config: connection settings (url, user token, and ids for context
and realm)
param app name: name of the app to use to get the context id from the iam
config
param json data: immutable object in json format
param obj name: object name of app to post to
def post immutable named(config, app _name, json data, obj name):

scope = '/iss/named/' + config|["account name"] + '/rt types' + '/' +
obj name

return post immutable(config, app name, json data, scope)

Post immutable object to ISS

param config: connection settings (url, user token, and ids for context
and realm)

param app name: name of the app to use to get the context id from the iam
config

param obj id: thinknode iss reference id for object to get

def get immutable(config, app_name, obj id):

dosimetry_worker
The dosimetry_worker module provides simplified function and calculation requests for common

dosimetry tasks. This library is constantly growing as more routine tasks are programmed in python.

Refer to the .decimal GitHub repository for the complete module. Some basic examples of provided
functionality are:

1. Aperture creation (using structures/beams or basic geometric)
2. Dose comparison

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library

2025/10/19 05:47 10/11 thinknode™ Examples

3. Grid creation
4. Image creation
5. PBS Spot functions

vtk_worker

The VTK worker provides a means to write out common rt_types to a .vtk file format that can be
visualized in Paraview. It's most useful for displaying image and primitive object data types.

Below is an example of turning a dose image_3d into a .vtk file for visualization in Paraview:

dose to vtk(dose id
img data json.loads (thinknode.get immutable(iam, ‘dicom', dose id

img rt types.image 3d
img.from json(img data
img2 = img.expand data

vtk.write vtk image3('E:/dicom/dose.vtk', img2

decimal_logging

The decimal_logging module provides formatted and detailed output window and file logging.

The following settings are available in the decimal_logging.py file: display_timestamps: display
timestamps in the output window/logfile display_types: display message types (e.g. debug, data, alert)
in the output window/logfile log_file: sets the logfile name and location

The following image shows the logging settings for each message type as:

1. Timestamps = True; Types = True
2. Timestamps = False; Types = True
3. Timestamps = False; Types = False

decimal App Documentation - http://apps.dotdecimal.com/

http://www.paraview.org/

2025/10/19 05:47 11/11 thinknode™ Examples

-- MESSAGE: decimal
14 -- DEBUWG: >
14
14 !'! WARNING: decimal warning
14
14 VEN decimal
EEREFEE! - - DATA: decimal

C
d

e
debug_data

Pl Pl Pl Pod Pl Pl [l

cimal
decimal debug

-- MESSAGE: de
-- DEBUG: >>>

Il WARNIMG: decimal warning
data

decimal
decimal

decimal warning

decimal ewvent

decimal

USR-001

.decimal LLC, 121 Central Park Place,
Sanford, FL. 32771

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:

Last update: 2021/07/29 18:21

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=dosimetry:userguide:thinknode&rev=1443190599

	thinknode™ Examples
	Python
	Python: Overview
	thinknode.cfg

	Python: Immutable Storage
	Post Generic ISS Object

	Python: Calculation Request
	Generic Calc Request
	SOBP Dose Calculation
	Example

	Python: decimal Libraries
	rt_types
	thinknode_worker
	dosimetry_worker
	vtk_worker
	decimal_logging

