
2025/06/07 17:51 1/3 resultsapi

decimal App Documentation - https://apps.dotdecimal.com/

Planning App ResultsAPI

The results API is provided to facilitate a controlled and consistent means for accessing necessary
treatment plan details and information. The Results API is most frequently used by customers wishing to
develop custom treatment plan reports for clinical patients. From the results API treatment plan data can
be accessed, including (but not limited to): patient geometries, prescriptions, beam information, spot
placements, and plan dose results. It should be pointed out that when users generate custom plan
reports they must include an indication of the coordinate system in which any position information is
being displayed and users should be reminded that all Results API position data is provided in IEC 61217
coordinate systems at this time. Plan reports must also include a list of any density reassignments that
were used in the plan.

Most Planning Results API functions must be called using Thinknode meta requests. Because of this
added complexity, an example function call has been added for end user convenience.

The Astroid ResultsAPI and META Requests

A fundamental princile of the Thinknode data environment in which Astroid lives is that Astroid stores
INPUT data only, not calculation results. As such, this makes it difficult for end users to directly access
the “usual” data from a treatment plan. The astroid ResultsAPI was created to address this difficulty by
allowing users to access complicated data (e.g.: dose, structure geometry, beam geometry, etc) from a
treatment plan without knowing how to excplictly construct the requests to generate that data.

The ResultsAPI functions take a treatemnt plan as an input and return a form of a calculation_request
object, which is not directly useful to end users. Instead, this object is used to generate the request for
the final useful data. This calculation request object could be pulled down, converted to text, and then
submitted as the body of a new Thinknode calculation request. This is slow, cumbersome, and sometimes
impossible because Thinknode imposes a 5MB limit on the size of the request body. Therefore, META
requests where implemented to automatically handle this case.

A META request consists of a function that is flagged as a Generator function. The Generator function is a
normal Thinknode provider function in all regards. However, the return type MUST be a valid Thinknode
calculation request. All Astroid ResultsAPI functions can thus be used as Generators in META calculations.
When a calculation request is flagged as a META type and submitted to Thinknode, the Generator
function will be processed and run. The calcualtion result returned by the META will contain the useful
data to the end user from the treatment plan submitted to the original ResultsAPI function.

In summary, the process flow of using the ResultsAPI is as follows:

User calls a ResultsAPI function with a specific treatment plan1.
ResultsAPI returns a calculation request for the final data the user requires2.
A META request is submitted with the returned ResultsAPI calculation request3.
The META request result is the useful data the user requires4.



2025/06/07 17:51 2/3 resultsapi

decimal App Documentation - https://apps.dotdecimal.com/

ResultsAPI Usage and Version Compatibility

The Planning Results API provides two types of functions for generating the request for a treatment plan:

A context based ResultsAPI function

(function names prefixed with “api_*”):

These functions check the Thinknode Planning App version context that was used to publish
(approve) or last edit the treatment plan and attempts to return a calculation_request for the
Planning App version context that was captured in the treatment plan.
These functions take in input parameters as a dynamic type to ignore Thinknode data upgrade
functions when calling this function for values that can be dependent on upgrades.
These functions return a context_based_calculation_request that contains the Thinknode Planning
App context ID and an optional calculation_request that should be submitted at the returned
context ID.
These functions uses the following logic to attempt generate a compatible request for the Planning
App version captured in the treatment plan:

If the ResultsAPI function does not exist the optional<calculation_request> will be returned
as null

If the ResultsAPI function signature has changed, the calculation request will be
constructed for the Planning ResultsAPI version for the context ID returned.

A non-context based ResultsAPI function

(non “api_*” prefixed function names):

These functions construct a request for the end data while not taking into account the captured
Planning App context ID of the treatment plan.

Available Functions

For a comprehensive list of available Planning Results API functions, please refer to the Results API
Function List.

Example

In the .decimal astroid-script-library there is a script called planning_results_api_example.py that
provides a basic example in calling and accessing the results API meta functions.

In this particular example the generate_plan_summary_request is the API function being called by the
generator and meta function as this is a common function to use in extracting data for use in generating

http://docs.apps.dotdecimal.com/planning_results_api/
http://docs.apps.dotdecimal.com/planning_results_api/
https://github.com/dotdecimal/astroid-script-library


2025/06/07 17:51 3/3 resultsapi

decimal App Documentation - https://apps.dotdecimal.com/

treatment plan reports.

From:
https://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:
https://apps.dotdecimal.com/doku.php?id=planning:userguide:resultsapi&rev=1534432684

Last update: 2021/07/29 18:22

https://apps.dotdecimal.com/
https://apps.dotdecimal.com/doku.php?id=planning:userguide:resultsapi&rev=1534432684

	Planning App ResultsAPI
	The Astroid ResultsAPI and META Requests
	ResultsAPI Usage and Version Compatibility
	A context based ResultsAPI function
	A non-context based ResultsAPI function
	Available Functions
	Example



