

Radiotherapy Support Functions (RSF)

Radiotherapy Support Functions are, as a basic description, general radiotherapy worker functions. RSF functions are used both various Dose Calculation Functions and Design Task Functions. The RSF function category encompass the remaining functions not classified as a DTF or DCF.

Image Processing

Below is a list of some common image processing functions and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the [Dosimetry App Manifest Guide](#)).

- **override_image_inside_structure:**
 - Returns a new 3D image where the value of each voxel that is more than cutoff % contained within the structure is set to the provided override value.
- **override_image_outside_structure:**
 - Modifies an image where the value of each voxel that is more than cutoff % contained within the structure is set to the provided override value (values outside the structure are not modified).
- **override_image_variant_outside_structure:**
 - Returns a new 3D image where the value of each voxel that is more than cutoff % outside the structure is set to the provided override value.
- **image_histogram:**
 - Creates a histogram using the specified 1D image
- **combine_images:**
 - Combine multiple images into single image
- **image_bounding_box:**
 - Returns the bounding box of a image
- **image_min_max:**
 - Get the minimum and maximum values in the given image.
- **image_list_min_max:**
 - Get the overall minimum and maximum values for a vector of images.

Contour and Structure Modification

Below is a list of some common polygon, polyset, and structure manipulation functions and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the [Dosimetry App Manifest Guide](#)).

- **polygon_centroid:**
 - Computes the geometric center of a polygon
- **scale_polygon:**

- Scales a polygon shape in XY (independently) based on a vector2D factor

- **scale_polyset:**

- Scales a polyset shape in XY (independently) based on a vector2D factor

- **polyset_expansion:**

- Expands a polyset uniformly around the edges by the given amount. This function can be used to either expand or contract a polyset.

- **polyset_combination:**

- Compute a combination of two or more polysets. This function can operate as a union, intersection, difference, or exclusive or (xor).

- **structure_combination:**

- Compute a combination of two or more structures. This function can operate as a union, intersection, difference, or exclusive or (xor).

- **structure_2d_expansion:**

- Compute the 2D expansion of a structure. The 2D expansion of a structure is computed by independently expanding each slice of the structure within its 2D plane. This function can be used to either expand or contract a structure.

- **structure_3d_expansion:**

- When computing the 3D expansion of a structure, the structure's slices are allowed to expand into other slices. This function can be used to either expand or contract a structure.

Geometric Primitives

Below is a list of some common creation functions for geometric primitives and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the [Dosimetry App Manifest Guide](#)).

- **make_cube:**

- Creates a triangle mesh representing a 3D box

- **make_cylinder:**

- Creates a triangle mesh representing an axis aligned, right 3D cylinder

- **make_pyramid:**

- Creates a triangle mesh representing a rectangular based, right 3D pyramid

- **make_sphere:**

- Creates a triangle mesh representing a 3D sphere

- **make_sliced_box:**

- Creates a structure geometry representing a 3D box (using a sliced mesh)

- **make_sliced_cylinder:**

- Creates a structure representing an axis aligned, right 3D cylinder (using a sliced mesh)

- **make_sliced_paralleliped:**

- Creates a structure representing a generalized 3D parallelepiped (using a sliced mesh)

- **make_sliced_pyramid:**

- Creates a structure representing a rectangular based, right 3D pyramid (using a sliced mesh)

- **make_sliced_sphere:**

- Creates a structure representing a 3D sphere (using a sliced mesh)

Degrader Manipulation

Below is a list of some common degrader manipulation functions and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the [Dosimetry App Manifest Guide](#)).

- **make_block:**
 - Create a degrader representing a block. A block has a uniform thickness within its shape and 0 thickness outside. Note that the shape is specified at the downstream edge of the block.
- **make_shifter:**
 - A block has a uniform thickness within its shape and 0 thickness outside. A range shifter is modelled as extending infinitely in the X and Y directions, so its thickness is uniform across the field.
- **make_rc:**
 - Create a degrader representing a range compensator. A range compensator is a degrader whose thickness is specified as an image. The image is specified in the plane of the downstream edge of the RC.
- **make_rc_nurb:**
 - Create a degrader representing a nurbs range compensator. A nurbs range compensator is a degrader whose thickness is specified as a smooth surface. The surface is specified in the plane of the downstream edge of the RC.
- **truncate_rc:**
 - Shifts a range compensator surface such that the minimum thickness is set to the specified value.
- **make_uniform_rc:**
 - Create a degrader representing a uniform thickness range compensator.
- **make_linear_rc:**
 - Create a degrader representing a linearly varying thickness range compensator.

By changing the input (shape, image, etc) passed into the the degrader make functions, the resulting degrader can be manipulated as desired.

From:
<http://apps.dotdecimal.com/> - **decimal App Documentation**

Permanent link:
http://apps.dotdecimal.com/doku.php?id=userguide:radiotherapy_support_functions:rsf&rev=1435349452

Last update: **2021/07/29 18:22**

