Radiotherapy Support Functions (RSF)

Radiotherapy Support Functions are, as a basic description, general radiotherapy worker functions. RSF functions are used both various Dose Calculation Functions and Design Task Functions. The RSF function category encompass the remaining functions not classified as a DTF or DCF.

Image Processing

Below is a list of some common image processing functions and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the Dosimetry App Manifest Guide).

override_image_inside_structure:

 $\circ\,$ Returns a new 3D image where the value of each voxel that is more than cutoff % contained within the structure is set to the provided override value

override_image_outside_structure:

- Modifies an image where the value of each voxel that is more than cutoff % contained within the structure is set to the provided override value (values outside the structure are not modified)
- override_image_variant_outside_structure:
 - Returns a new 3D image where the value of each voxel that is more than cutoff % outside the structure is set to the provided override value
- image_histogram:
 - Creates a histogram using the specified 1D image
- combine_images_<N>d:
 - $\circ\,$ Where N is the size of the image
 - $\circ\,$ Combine multiple images into single image
- image_bounding_box_<N>d:
 - $\circ\,$ Where N is the size of the image
 - $\circ\,$ Returns the bounding box of an image of size N
- bounding_box_<N>d:
 - $\circ\,$ Where N is the size of the image
 - Returns the bounding box of an image_geometry of size N. Allows support for non equal spacing of image pixels
- image_min_max_<N>d:
 - $\circ~$ Where N is the size of the image
 - $\circ\,$ Get the minimum and maximum values in the given image
- image_list_min_max_<N>d:
 - $\circ\,$ Where N is the size of the image
 - $\circ\,$ Get the overall minimum and maximum values for a vector of images

create_uniform_image_on_grid_<N>d:

- Where N is the size of the image
- $\circ\,$ Create an image of uniform pixel values (e.g. water phantom) over a grid of size N
- See thinknode[™] Examples for python for an example of using this function

1/4

Contour and Structure Modification

Below is a list of some common polygon, polyset, and structure manipulation functions and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the Dosimetry App Manifest Guide).

- polygon_centroid:
 - $\circ\,$ Computes the geometric center of a polygon
- scale_polygon:
 - Scales a polygon shape in XY (independently) based on a vector2D factor
- scale_polyset:
 - $\circ\,$ Scales a polyset shape in XY (independently) based on a vector2D factor
- polyset_expansion:
 - Expands a polyset uniformly around the edges by the given amount. This function can be used to either expand or contract a polyset
- polyset_combination:
 - Compute a combination of two or more polysets. This function can operate as a union, intersection, difference, or exclusive or (xor)
- structure_combination:
 - Compute a combination of two or more structures. This function can operate as a union, intersection, difference, or exclusive or (xor)
- structure_2d_expansion:
 - Compute the 2D expansion of a structure. The 2D expansion of a structure is computed by independently expanding each slice of the structure within its 2D plane. This function can be used to either expand or contract a structure
- structure_3d_expansion:
 - When computing the 3D expansion of a structure, the structure's slices are allowed to expand into other slices. This function can be used to either expand or contract a structure
- point_list_bounding_box_<N>d:
 - $\,\circ\,$ Where N is the size of the vector (1, 2, 3 dimensions)
 - $\circ\,$ Computes the bounding box of a list of N dimensional vectors

Geometric Primitives

Below is a list of some common creation functions for geometric primitives and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the Dosimetry App Manifest Guide).

- make_cube:
 - Creates a triangle mesh representing a 3D box
 - See thinknode[™] Examples for python for an example of using this function
- make_cylinder:
 - $\,\circ\,$ Creates a triangle mesh representing an axis aligned, right 3D cylinder
- make_pyramid:
 - Creates a triangle mesh representing a rectangular based, right 3D pyramid

- make_sphere:
 - $\circ\,$ Creates a triangle mesh representing a 3D sphere
- make_sliced_box:
 - \circ Creates a structure geometry representing a 3D box (using a sliced mesh)
- make_sliced_cylinder:
 - Creates a structure representing an axis aligned, right 3D cylinder (using a sliced mesh)
- make_sliced_parallelepiped:
 - Creates a structure representing a generalized 3D parallelepiped (using a sliced mesh)
- make_sliced_pyramid:
 - Creates a structure representing a rectangular based, right 3D pyramid (using a sliced mesh)
- make_sliced_sphere:
 - Creates a structure representing a 3D sphere (using a sliced mesh)

Degrader Manipulation

Below is a list of some common degrader manipulation functions and a brief explanation of their intended usage (Specific details of each function, argument parameters, and return values are provided at the Dosimetry App Manifest Guide).

- make_block:
 - Create a degrader representing a block. A block has a uniform thickness within its shape and 0 thickness outside. Note that the shape is specified at the downstream edge of the block
- make_shifter:
 - A block has a uniform thickness within its shape and 0 thickness outside. A range shifter is modelled as extending infinitely in the X and Y directions, so its thickness is uniform across the field
- make_rc:
 - Create a degrader representing a range compensator. A range compensator is a degrader whose thickness is specified as an image. The image is specified in the plane of the downstream edge of the RC
- make_rc_nurb:
 - Create a degrader representing a nurbs range compensator. A nurbs range compensator is a degrader whose thickness is specified as a smooth surface. The surface is specified in the plane of the downstream edge of the RC
- truncate_rc:
 - Shifts a range compensator surface such that the minimum thickness is set to the specified value
- make_uniform_rc:
 - $\,\circ\,$ Create a degrader representing a uniform thickness range compensator
- make_linear_rc:
 - Create a degrader representing a linearly varying thickness range compensator

By changing the input (shape, image, etc) passed into the the degrader make functions, the resulting degrader can be manipulated as desired.

3/4

From: https://apps.dotdecimal.com/ - decimal App Documentation

Permanent link: https://apps.dotdecimal.com/doku.php?id=userguide:radiotherapy_support_functions:rsf&rev=1435350821

Last update: 2021/07/29 18:22

rsf