2026/01/27 10:39 1/10 thinknode

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python and c++. Any further
dependencies are listed along with the provided scripts.

C++

A simple C++ project that handles posting immutable objects and calculation requests to thinknode™
framework. The main() function toggles on which task to perform. Below are the defined functions of the
project as well as a link to download the file in its entirety.

Dependencies:

e libcurl
e jsoncpp

thinknode.cpp

e thinknode.cpp

// Copyright (c) 2015 .decimal, Inc. All rights reserved.
// Desc: Worker to perform tasks on thinknode framework

#include "stdafx.h"
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <json/json.h>

#define CURL_STATICLIB
#include <curl/curl.h>

using namespace std;

// API configuration

string basic_user = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456"; // Baseb4 encoded
username:password

string api url = "https://api.thinknode.com/v1.0"; // thinknode url
string app name = "Dosimetry"; // app name
string app version = "1.0.0"; // app version

decimal App Documentation - http://apps.dotdecimal.com/

http://curl.haxx.se/libcurl/c/example.html
https://github.com/open-source-parsers/jsoncpp
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cpp

2026/01/27 10:39 2/10 thinknode

// Curl get request call back
static size t WriteCallback(void *contents, size t size, size t nmemb, void
*userp

// Select a specific json tag into string
string get json value(string json, string id, int num = 0

// Curllib get http request
string do curl get(string auth, string url

// Curllib post http request
string do_curl post(string auth, string json, string url

// Handles http request to get the user ID from the basic user
string get user token

// Handles http request for realm id
string get realm id(string token

// Handles http request for context id
string get context id(std::map<string, string> config

// API Authentication
std: :map<string, string> authenticate

// Grab and post the specified calc request
void post calc request

// Grab and post sepcified object to the ISS
void post immutable object

int main(void

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/27 10:39 3/10 thinknode

C++: Immutable Storage

Posting an object to Immutable Storage

The below example is a function in the thinknode.cpp class to post an immutable object to the dosimetry
app on the thinknode™ framework. This example can be used for any immutable storage post using any
datatype by replacing the json iss file.
Dependencies:

e compute_aperture_creation_params.json

void post immutable object

// Immutable info

string path = "C:\\"; // Path of folder
json file is located 1in

string sjon iss file = "aperture creation params.json"; // local json
object file

string obj name = "aperture creation params"; // app named type

std: :map<string, string> iam = authenticate();

// Read local immutable json file

std::ifstream json file((path + sjon iss file).c str

string str((std::istreambuf iterator<char>(json file
std::istreambuf iterator<char> ;

.
’

’

// Post object
std::cout << "Posting Object to ISS..." << std::endl;
string authentication string = "Authorization : Bearer " +
iam["user token"];
string res = do curl post
authentication string,
str,
api url + "/iss/named/" + app_name + "/" + obj name + "/?context=" +
iam["context id"]);
std::cout << "Immuntable ID: " << res << std::endl;

Returns:

1. The ID (in json) of the object stored in Immutable Storage.

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:aperture_creation_params.json

2026/01/27 10:39 4/10 thinknode

C++: Calculation Request

The below example is a function in the thinknode.cpp class to post a calculation request to dosimetry.
This example can be used for any calculation request using any datatype by replacing the calculation

request json file. This request will post a calculation request, check the status using long polling with a
specified timeout, and return the calculation result

Dependencies:
e compute_aperture.json

void post calc request

// Request info

string path = "C:\\"; // Path of folder json
file is located in

string sjon iss file = "compute aperture.json"; // local json calc
request

std: :map<string, string> iam = authenticate();

std::ifstream json file((path + sjon iss file).c str ;
string str((std::istreambuf iterator<char>(json file)),
std::istreambuf iterator<char> ;

string authentication string = "Authorization : Bearer " +
iam["user token"];

// Get calculation id

std::cout << "Sending Calculation..." << std::endl;

string calculation id = get json value
do curl post(authentication string,
str, api url + "/calc/?context=" + iam["context id"]),
“id");

// Get calculation Status - using long polling
std::cout << "Checking Calculation Status..." << std::endl;
string calculation status = get json value
do curl get(authentication string,
api url + "/calc/" + calculation id +
"/status/?status=completed&progress=1&timeout=5"),

Iltypell ;
calculation status.find("failed") != string::npos

std::cout << "Server Responded: " << calculation_ status << std::endl;

’

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:compute_aperture.json

2026/01/27 10:39 5/10 thinknode

// Get calculation Result
std::cout << "Fetching Calculation Result..." << std::endl;
string calculation result = do curl get
authentication string,
api url + "/calc/" + calculation_id + "/result/?context=" +
iam["context id"]);

std::cout << "Calculation Result: " << calculation_result << std::endl;

Returns:

1. The calculation result (in json) of the API function called.

Python

This python example is a simple python project that handles posting immutable objects and calculation
requests to thinknode™ framework. The post _calc_request and post immutable object are separate
project files which handle the tasks to perform. Each calls the thinknode.cfg file to configure the api
settings and the thinknode.py file handles all the http requests. Below are the defined functions of the file
as well as a link to download the file in its entirety.

Dependencies:

e Python Requests
e thinknode.py
¢ thinknode.cfg

thinknode.cfg

Configuration file for connecting to thinknode™. basic_user being a base64 encoded username and
password and api_url being the connection string to the thinknode™ framework.

thinknode.cfg
{

"basic user": "<Base64 encoded username:password>",
"api url": "https://api.thinknode.com/v1.0"

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cfg
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://docs.python-requests.org/en/latest/
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cfg
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=3

2026/01/27 10:39 6/10 thinknode

thinknode.py
The thinknode.py file performs worker tasks to the thinknode™ framework. Below are the defined
functions of the file as well as a link to download the file in its entirety.

e thinknode.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Worker to perform tasks on thinknode framework

Check that the response returned a successful code
assert success(res):

Read the thinknode config file
read config(path):

Authenticate with thinknode and store necessary 1ids
param config: connection settings (url and unique basic user
authentication)

authenticate(config, app name, app version

Send calculation request to thinknode api
do calculation(config, json data

Post immutable object to ISS
post immutable(config, json data, app name, obj name):

Python: Immutable Storage

Posting an object to Immutable Storage

Basic example using the thinknode.py class to post an immutable object to the dosimetry app on the
thinknode™ framework. This example can be used for any immutable storage post using any datatype by
replacing the json iss file.

Dependencies:

e thinknode.py
e compute_aperture_creation_params.json

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:aperture_creation_params.json

2026/01/27 10:39 7/10 thinknode

post immutable_object.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.

Desc: Post an immutable json object to the thinknode framework
thinknode
json
json iss file "aperture creation params.json" #local json object file
app_name "dosimetry" #app name for thinknode
and local folder
app_version "1.0.0" #app version for thinknode
url
obj name "aperture creation params" #app named type

Get unique user id and api url

config = thinknode.read config('thinknode.cfg'

Get IAM ids

iam = thinknode.authenticate(config, app name, app version

App object to post to iss
open(app name + '/objects/' + json iss file data file:
json data = json.load(data file

Post immutable object to ISS
res thinknode.post immutable(iam, json data, app name, obj name
“Immutable id: " + res.text

Returns:

1. The ID (in json) of the object stored in Immutable Storage.
Python: Calculation Request

Basic example using the thinknode.py class to post a calculation request to dosimetry. This example can
be used for any calculation request using any datatype by replacing the calculation request json file. This
request will post a calculation request, check the status using long polling with a specified timeout, and
return the calculation result.

Dependencies:

e thinknode.py
e compute_aperture.json

post _calc_request.py

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=5
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:compute_aperture.json
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=6

2026/01/27 10:39 8/10 thinknode

Copyright (c) 2015 .decimal, Inc. All rights reserved.

Desc: Post a json calculation request to the thinknode framework
thinknode
json
json calc file "compute aperture.json"#local json calc request
app_name "dosimetry" #app name for thinknode and local
folder
app_version "1.0.0" #app version for thinknode url

Get unique user id and api url

config = thinknode.read config('thinknode.cfg'

Get IAM 1ids

iam = thinknode.authenticate(config, app name, app version

App calculation request
open(app name + '/' + json _calc file data file:
json data json.load(data file

Send calc request and wait for answer
res = thinknode.do calculation(iam, json data
“Calculation Result: " + res.text

Returns:

1. The calculation result (in json) of the API function called.

Node.js

The following section contains examples using node.js and (if applicable) the specified modules. These
examples are for a high level approach to encoding and decoding the blob data that is part of the
Dosimetry App calculation request.

Base64 Blob Format

The blob returned by a calculation request is formatted as such:

//
//
//
//
//
//

value type enum definitions
Nil = 0;

Boolean = 1;

Number = 2;

String = 3;

Blob = 4;

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/27 10:39 9/10 thinknode

// List

= 5;
// Record =

6;

// For value types nil, boolean, number, string
// <uint32 value type enum (4 bytes)><data>

// For value types blob, list, record
// <uint31 value type enum (4 bytes)><size of each data (8 bytes)><data>

Node: Decrypt Base64 Blob Data

The following example shows , using node.js, how to decode the base64 encoded data returned by a
calculation request.

// The below base64string is a blob array with the values [-25, -25, 25, -25,
25, 25, -25, 25]

b64string "CF2H10z eJxjYWBgcGBABpYHOGgHHHWMcQDM7AYN"

// The below base64string is a number set to the value 25.1
//var b64string = "NztmHgz eJxjYmBgmDUTCCQtHQATFwOT";

buf Buffer(b64string, 'base64’
zlib require('zlib"'

read base 255 number(buf, offset
n 0
S 0
while (offset buf.length
digit = buf/offset
value = buf.readUInt8(offset

offset
S
digit.toString(16 "
n n 255
n value
S, n

size read base 255 number(buf, 4

zlib.unzip(buf.slice(4 + size[0 err, data
err

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/27 10:39 10/10 thinknode
err
value type = data.readUInt32LE
// Number
value type
console.log("DOUBLE", data.readDoublelLE
// Blob
value type
// Read size here
values
i i < data.length; i
values.push(data.readDoublelLE (i
console.log(values); // Outputs: [-25, -25, 25, -25, 25, 25, -25, 25

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:

Last update: 2021/07/29 18:19

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=userguide:thinknode&rev=1424272230

	thinknode™ Examples
	C++
	thinknode.cpp
	C++: Immutable Storage
	Posting an object to Immutable Storage

	C++: Calculation Request

	Python
	thinknode.cfg
	thinknode.py
	Python: Immutable Storage
	Posting an object to Immutable Storage

	Python: Calculation Request

	Node.js
	Node: Decrypt Base64 Blob Data

