
2026/01/27 10:39 1/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python and c++. Any further
dependencies are listed along with the provided scripts.

C++

A simple C++ project that handles posting immutable objects and calculation requests to thinknode™
framework. The main() function toggles on which task to perform. Below are the defined functions of the
project as well as a link to download the file in its entirety.

Dependencies:

libcurl
jsoncpp

thinknode.cpp

thinknode.cpp

// Copyright (c) 2015 .decimal, Inc. All rights reserved.
// Desc: Worker to perform tasks on thinknode framework

#include "stdafx.h"
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <json/json.h>

#define CURL_STATICLIB
#include <curl/curl.h>

using namespace std;

// API configuration
string basic_user = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456"; // Base64 encoded
username:password
string api_url = "https://api.thinknode.com/v1.0"; // thinknode url
string app_name = "Dosimetry"; // app name
string app_version = "1.0.0"; // app version

http://curl.haxx.se/libcurl/c/example.html
https://github.com/open-source-parsers/jsoncpp
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cpp

2026/01/27 10:39 2/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

// Curl get request call back
static size_t WriteCallback(void *contents, size_t size, size_t nmemb, void
*userp)
...

// Select a specific json tag into string
string get_json_value(string json, string id, int num = 0)
...

// Curllib get http request
string do_curl_get(string auth, string url)
...

// Curllib post http request
string do_curl_post(string auth, string json, string url)
...

// Handles http request to get the user ID from the basic_user
string get_user_token()
...

// Handles http request for realm id
string get_realm_id(string token)
...

// Handles http request for context id
string get_context_id(std::map<string, string> config)
...

// API Authentication
std::map<string, string> authenticate()
...

// Grab and post the specified calc request
void post_calc_request()
...

// Grab and post sepcified object to the ISS
void post_immutable_object()
...

int main(void)
...

2026/01/27 10:39 3/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

C++: Immutable Storage

Posting an object to Immutable Storage

The below example is a function in the thinknode.cpp class to post an immutable object to the dosimetry
app on the thinknode™ framework. This example can be used for any immutable storage post using any
datatype by replacing the json iss file.

Dependencies:

compute_aperture_creation_params.json

void post_immutable_object()
{
 // Immutable info
 string path = "C:\\"; // Path of folder
json file is located in
 string sjon_iss_file = "aperture_creation_params.json"; // local json
object file
 string obj_name = "aperture_creation_params"; // app named_type

 std::map<string, string> iam = authenticate();

 // Read local immutable json file
 std::ifstream json_file((path + sjon_iss_file).c_str());
 string str((std::istreambuf_iterator<char>(json_file)),
std::istreambuf_iterator<char>());

 // Post object
 std::cout << "Posting Object to ISS..." << std::endl;
 string authentication_string = "Authorization : Bearer " +
iam["user_token"];
 string res = do_curl_post(
 authentication_string,
 str,
 api_url + "/iss/named/" + app_name + "/" + obj_name + "/?context=" +
iam["context_id"]);
 std::cout << "Immuntable ID: " << res << std::endl;
}

Returns:

The ID (in json) of the object stored in Immutable Storage.1.

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:aperture_creation_params.json

2026/01/27 10:39 4/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

C++: Calculation Request

The below example is a function in the thinknode.cpp class to post a calculation request to dosimetry.
This example can be used for any calculation request using any datatype by replacing the calculation
request json file. This request will post a calculation request, check the status using long polling with a
specified timeout, and return the calculation result.

Dependencies:

compute_aperture.json

void post_calc_request()
{
 // Request info
 string path = "C:\\"; // Path of folder json
file is located in
 string sjon_iss_file = "compute_aperture.json"; // local json calc
request

 std::map<string, string> iam = authenticate();

 std::ifstream json_file((path + sjon_iss_file).c_str());
 string str((std::istreambuf_iterator<char>(json_file)),
std::istreambuf_iterator<char>());

 string authentication_string = "Authorization : Bearer " +
iam["user_token"];
 // Get calculation id
 std::cout << "Sending Calculation..." << std::endl;
 string calculation_id = get_json_value(
 do_curl_post(authentication_string,
 str, api_url + "/calc/?context=" + iam["context_id"]),
 "id");

 // Get calculation Status - using long polling
 std::cout << "Checking Calculation Status..." << std::endl;
 string calculation_status = get_json_value(
 do_curl_get(authentication_string,
 api_url + "/calc/" + calculation_id +
"/status/?status=completed&progress=1&timeout=5"),
 "type");
 if (calculation_status.find("failed") != string::npos)
 {
 std::cout << "Server Responded: " << calculation_status << std::endl;
 return;
 }

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:compute_aperture.json

2026/01/27 10:39 5/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

 // Get calculation Result
 std::cout << "Fetching Calculation Result..." << std::endl;
 string calculation_result = do_curl_get(
 authentication_string,
 api_url + "/calc/" + calculation_id + "/result/?context=" +
iam["context_id"]);

 std::cout << "Calculation Result: " << calculation_result << std::endl;
}

Returns:

The calculation result (in json) of the API function called.1.

Python

This python example is a simple python project that handles posting immutable objects and calculation
requests to thinknode™ framework. The post_calc_request and post_immutable_object are separate
project files which handle the tasks to perform. Each calls the thinknode.cfg file to configure the api
settings and the thinknode.py file handles all the http requests. Below are the defined functions of the file
as well as a link to download the file in its entirety.

Dependencies:

Python Requests
thinknode.py
thinknode.cfg

thinknode.cfg

Configuration file for connecting to thinknode™. basic_user being a base64 encoded username and
password and api_url being the connection string to the thinknode™ framework.

thinknode.cfg

{
 "basic_user": "<Base64 encoded username:password>",
 "api_url": "https://api.thinknode.com/v1.0"
}

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cfg
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://docs.python-requests.org/en/latest/
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cfg
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=3

2026/01/27 10:39 6/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

thinknode.py

The thinknode.py file performs worker tasks to the thinknode™ framework. Below are the defined
functions of the file as well as a link to download the file in its entirety.

thinknode.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Worker to perform tasks on thinknode framework

Check that the response returned a successful code
def assert_success(res):
...

Read the thinknode config file
def read_config(path):
...

Authenticate with thinknode and store necessary ids
param config: connection settings (url and unique basic user
authentication)
def authenticate(config, app_name, app_version):
...

Send calculation request to thinknode api
def do_calculation(config, json_data):
...

Post immutable object to ISS
def post_immutable(config, json_data, app_name, obj_name):
...

Python: Immutable Storage

Posting an object to Immutable Storage

Basic example using the thinknode.py class to post an immutable object to the dosimetry app on the
thinknode™ framework. This example can be used for any immutable storage post using any datatype by
replacing the json iss file.

Dependencies:

thinknode.py
compute_aperture_creation_params.json

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.py
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:aperture_creation_params.json

2026/01/27 10:39 7/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

post_immutable_object.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post an immutable json object to the thinknode framework

import thinknode
import json

json_iss_file = "aperture_creation_params.json" #local json object file
app_name = "dosimetry" #app name for thinknode
and local folder
app_version = "1.0.0" #app version for thinknode
url
obj_name = "aperture_creation_params" #app named_type

Get unique user_id and api_url
config = thinknode.read_config('thinknode.cfg')
Get IAM ids
iam = thinknode.authenticate(config, app_name, app_version)

App object to post to iss
with open(app_name + '/objects/' + json_iss_file) as data_file:
 json_data = json.load(data_file)

Post immutable object to ISS
res = thinknode.post_immutable(iam, json_data, app_name, obj_name)
print("Immutable id: " + res.text)

Returns:

The ID (in json) of the object stored in Immutable Storage.1.

Python: Calculation Request

Basic example using the thinknode.py class to post a calculation request to dosimetry. This example can
be used for any calculation request using any datatype by replacing the calculation request json file. This
request will post a calculation request, check the status using long polling with a specified timeout, and
return the calculation result.

Dependencies:

thinknode.py
compute_aperture.json

post_calc_request.py

http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=5
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:compute_aperture.json
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=6

2026/01/27 10:39 8/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post a json calculation request to the thinknode framework

import thinknode
import json

json_calc_file = "compute_aperture.json"#local json calc request
app_name = "dosimetry" #app name for thinknode and local
folder
app_version = "1.0.0" #app version for thinknode url

Get unique user_id and api_url
config = thinknode.read_config('thinknode.cfg')
Get IAM ids
iam = thinknode.authenticate(config, app_name, app_version)

App calculation request
with open(app_name + '/' + json_calc_file) as data_file:
 json_data = json.load(data_file)

Send calc request and wait for answer
res = thinknode.do_calculation(iam, json_data)
print("Calculation Result: " + res.text)

Returns:

The calculation result (in json) of the API function called.1.

Node.js

The following section contains examples using node.js and (if applicable) the specified modules. These
examples are for a high level approach to encoding and decoding the blob data that is part of the
Dosimetry App calculation request.

Base64 Blob Format

The blob returned by a calculation request is formatted as such:

// value_type enum definitions
// Nil = 0;
// Boolean = 1;
// Number = 2;
// String = 3;
// Blob = 4;

2026/01/27 10:39 9/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

// List = 5;
// Record = 6;

// For value_types nil, boolean, number, string
// <uint32 value_type enum (4 bytes)><data>

// For value_types blob, list, record
// <uint31 value_type enum (4 bytes)><size of each data (8 bytes)><data>

Node: Decrypt Base64 Blob Data

The following example shows , using node.js, how to decode the base64 encoded data returned by a
calculation request.

// The below base64string is a blob array with the values [-25, -25, 25, -25,
25, 25, -25, 25]
var b64string = "CF2Hl0z_eJxjYWBgcGBABpYH0GgHHHwMcQDM7AYN";

// The below base64string is a number set to the value 25.1
//var b64string = "NztmHgz_eJxjYmBgmDUTCCQtHQATFwOT";

var buf = new Buffer(b64string, 'base64');

var zlib = require('zlib');

function read_base_255_number(buf, offset) {
 var n = 0;
 var s = 0;
 while (offset < buf.length) {
 var digit = buf[offset];
 var value = buf.readUInt8(offset);
 offset++;
 s++;
 if (digit.toString(16) === 'ff') {
 break;
 }
 n = n * 255;
 n += value;
 }
 return [s, n];
}

var size = read_base_255_number(buf, 4);

zlib.unzip(buf.slice(4 + size[0]), function (err, data) {
 if (err) {

2026/01/27 10:39 10/10 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

 throw err
 }
 var value_type = data.readUInt32LE(0);

 // Number
 if (value_type === 2) {
 console.log("DOUBLE", data.readDoubleLE(4));
 }
 // Blob
 else if (value_type === 4) {
 // Read size here
 var values = [];
 for (var i = 12; i < data.length; i+=8) {
 values.push(data.readDoubleLE(i));
 }
 console.log(values); // Outputs: [-25, -25, 25, -25, 25, 25, -25, 25
]
 }
});

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:
http://apps.dotdecimal.com/doku.php?id=userguide:thinknode&rev=1424272230

Last update: 2021/07/29 18:19

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=userguide:thinknode&rev=1424272230

	thinknode™ Examples
	C++
	thinknode.cpp
	C++: Immutable Storage
	Posting an object to Immutable Storage

	C++: Calculation Request

	Python
	thinknode.cfg
	thinknode.py
	Python: Immutable Storage
	Posting an object to Immutable Storage

	Python: Calculation Request

	Node.js
	Node: Decrypt Base64 Blob Data

