
2026/01/16 22:50 1/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python and c++. Any further
dependencies are listed along with the provided scripts.

C++

A simple C++ project that handles posting immutable objects and calculation requests to thinknode™
framework. The main() function toggles on which task to perform. Below are the defined functions of the
project as well as a link to download the file in its entirety.

Dependencies:

libcurl
jsoncpp

thinknode.cpp

thinknode.cpp

// Copyright (c) 2015 .decimal, Inc. All rights reserved.
// Desc: Worker to perform tasks on thinknode framework

#include "stdafx.h"
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <json/json.h>

#define CURL_STATICLIB
#include <curl/curl.h>

using namespace std;

// API configuration
string basic_user = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456"; // Base64 encoded
username:password
string api_url = "https://api.thinknode.com/v1.0"; // thinknode url
string app_name = "Dosimetry"; // app name
string app_version = "1.0.0"; // app version

http://curl.haxx.se/libcurl/c/example.html
https://github.com/open-source-parsers/jsoncpp
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cpp

2026/01/16 22:50 2/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

// Curl get request call back
static size_t WriteCallback(void *contents, size_t size, size_t nmemb, void
*userp)
...

// Select a specific json tag into string
string get_json_value(string json, string id, int num = 0)
...

// Curllib get http request
string do_curl_get(string auth, string url)
...

// Curllib post http request
string do_curl_post(string auth, string json, string url)
...

// Handles http request to get the user ID from the basic_user
string get_user_token()
...

// Handles http request for realm id
string get_realm_id(string token)
...

// Handles http request for context id
string get_context_id(std::map<string, string> config)
...

// API Authentication
std::map<string, string> authenticate()
...

// Grab and post the specified calc request
void post_calc_request()
...

// Grab and post sepcified object to the ISS
void post_immutable_object()
...

int main(void)
...

2026/01/16 22:50 3/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

C++: Immutable Storage

The below example is a function in the thinknode.cpp class to post an immutable object to the dosimetry
app on the thinknode™ framework. This example can be used for any immutable storage post using any
datatype by replacing the json iss file.

Dependencies:

compute_aperture_creation_params.json

void post_immutable_object()
{
 // Immutable info
 string path = "C:\\"; // Path of folder
json file is located in
 string sjon_iss_file = "aperture_creation_params.json"; // local json
object file
 string obj_name = "aperture_creation_params"; // app named_type

 std::map<string, string> iam = authenticate();

 // Read local immutable json file
 std::ifstream json_file((path + sjon_iss_file).c_str());
 string str((std::istreambuf_iterator<char>(json_file)),
std::istreambuf_iterator<char>());

 // Post object
 std::cout << "Posting Object to ISS..." << std::endl;
 string authentication_string = "Authorization : Bearer " +
iam["user_token"];
 string res = do_curl_post(
 authentication_string,
 str,
 api_url + "/iss/named/" + app_name + "/" + obj_name + "/?context=" +
iam["context_id"]);
 std::cout << "Immuntable ID: " << res << std::endl;
}

Returns:

The ID (in json) of the object stored in Immutable Storage.1.

C++: Calculation Request

The below example is a function in the thinknode.cpp class to post a calculation request to dosimetry.

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:aperture_creation_params.json

2026/01/16 22:50 4/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

This example can be used for any calculation request using any datatype by replacing the calculation
request json file. This request will post a calculation request, check the status using long polling with a
specified timeout, and return the calculation result.

Dependencies:

compute_aperture.json

void post_calc_request()
{
 // Request info
 string path = "C:\\"; // Path of folder json
file is located in
 string sjon_iss_file = "compute_aperture.json"; // local json calc
request

 std::map<string, string> iam = authenticate();

 std::ifstream json_file((path + sjon_iss_file).c_str());
 string str((std::istreambuf_iterator<char>(json_file)),
std::istreambuf_iterator<char>());

 string authentication_string = "Authorization : Bearer " +
iam["user_token"];
 // Get calculation id
 std::cout << "Sending Calculation..." << std::endl;
 string calculation_id = get_json_value(
 do_curl_post(authentication_string,
 str, api_url + "/calc/?context=" + iam["context_id"]),
 "id");

 // Get calculation Status - using long polling
 std::cout << "Checking Calculation Status..." << std::endl;
 string calculation_status = get_json_value(
 do_curl_get(authentication_string,
 api_url + "/calc/" + calculation_id +
"/status/?status=completed&progress=1&timeout=5"),
 "type");
 if (calculation_status.find("failed") != string::npos)
 {
 std::cout << "Server Responded: " << calculation_status << std::endl;
 return;
 }

 // Get calculation Result
 std::cout << "Fetching Calculation Result..." << std::endl;
 string calculation_result = do_curl_get(
 authentication_string,

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:compute_aperture.json

2026/01/16 22:50 5/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

 api_url + "/calc/" + calculation_id + "/result/?context=" +
iam["context_id"]);

 std::cout << "Calculation Result: " << calculation_result << std::endl;
}

Returns:

The calculation result (in json) of the API function called.1.

Python

The provided python scripts and libraries are meant to be a foundation and starting point for using the
astroid Dosimetry app on the thinknode™ framework. The provided scripts outline the basic usage of
using ISS to store objects, constructing, and making calculation requests to the calculation provider. The
below sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.

thinknode.cfg

Configuration file for connecting to the Dosimetry app on the thinknode™ framework. This file is required
by all scripts in the python astroid_script_library to authenticate and use the Dosimetry app.

basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.
api_url being the connection string to the thinknode™ framework.
app_name being the current app name (e.g. dosimetry).
app_version being the current version of dosimetry existing on the thinknode™ framework being
used.

thinknode.cfg

{
 "basic_user": "<Base64 encoded username:password>",
 "api_url": "https://api.thinknode.com/v1.0",
 "app_name": "dosimetry",
 "app_version": "1.0.0.0"
}

https://github.com/dotdecimal/astroid-script-library
http://www.docs.thinknode.com
http://www.docs.thinknode.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=3

2026/01/16 22:50 6/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

Python: Immutable Storage

Post Generic ISS Object

The post_iss_object_generic.py is a basic python script that provides an example to post any dosimetry
type as an immutable object to the dosimetry app on the thinknode™ framework. This example can be
used for any immutable storage post using any datatype by replacing the json iss file. The current
example posts the aperture_creation_params.json as

Dependencies:

thinknode.cfg
.decimal Python libraries
compute_aperture_creation_params.json (or any other prebuilt json file of a dosimetry object as
described in the Dosimetry Manifest Guide)

post_iss_object_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post an immutable json object to the thinknode framework

from lib import thinknode_worker as thinknode
from lib import decimal_logging as dl
import requests
import json

iss_dir = "iss_files"
json_iss_file = "aperture_creation_params.json"
obj_name = "aperture_creation_params"

Get IAM ids
iam = thinknode.authenticate(thinknode.read_config('thinknode.cfg'))

App object to post to iss
with open(iss_dir + '/' + json_iss_file) as data_file:
 json_data = json.load(data_file)

Post immutable object to ISS
res = thinknode.post_immutable(iam, json_data, obj_name)
dl.data("Immutable id: ", res.text)

Returns:

The ID (in json) of the object stored in Immutable Storage.1.

http://docs.dosimetry.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=4

2026/01/16 22:50 7/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

Python: Calculation Request

Generic Calc Request

The post_calc_request_generic.py is a basic example to post a calculation request to dosimetry. This
example can be used for any calculation request using any datatype by replacing the calculation request
json file. This request will post a calculation request, check the status using long polling with a specified
timeout, and return the calculation result.

Dependencies:

thinknode.cfg
.decimal Python libraries
compute_aperture.json (or any other prebuilt json file of a dosimetry object as described in the
Dosimetry Manifest Guide)

post_calc_request_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post a json calculation request to the thinknode framework

from lib import thinknode_worker as thinknode
from lib import decimal_logging as dl
import requests
import json

request_dir = "request_files"
json_calc_file = "compute_aperture.json"

Get IAM ids
iam = thinknode.authenticate(thinknode.read_config('thinknode.cfg'))

App calculation request
with open(request_dir + '/' + json_calc_file) as data_file:
 json_data = json.load(data_file)

Send calc request and wait for answer
res = thinknode.do_calculation(iam, json_data, True)
dl.data("Calculation Result: ", res.text)

Returns:

The calculation result (in json) of the API function called.1.

http://docs.dosimetry.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=5

2026/01/16 22:50 8/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

SOBP Dose Calculation

The post_calc_request_sobp_dose.py and post_calc_request_sobp_dose_with_shifter.py are basic
examples to create and call an sobp dose calculation function request to the dosimetry app on the
thinknode™ framework.

The post_calc_request_sobp_dose.py example creates the entire calculation request inline using
thinknode structure, array, and function requests. The entire dose calculation request is performed using
one thinknode calculation provider call. While this structure of a request is a little more complicated to
setup and perform, it removes the need to post to ISS or perform ancillary calculations separately.

The post_calc_request_sobp_dose_with_shifter.py adds in a complication of a degrader to the sobp
calculation. This example performs two separate calculation requests. The first request creates the
proton degrader_geometry and the second performs actual dose calculation request using the previously
made degrader. The entire example could be condensed into a single more complicated thinknode
calculation structure, eliminating the need to perform two separate requests, but it can also be simpler to
perform some calculations separately as shown.

Example

Below is an abbreviated version of the post_calc_request_sobp_dose.py file. The abbreviated sections are
denoted as “…”.

The dosimetry_types (dt) module that is imported is a class library of all the dosimetry data types
as described in the Dosimetry Manifest Guide. This library provides easier manual construction of
the dosimetry data types.
The thinknode_worker (thinknode) module that is imported is a library that provides worker
functions for performing and building the authentication, iss, and calculation requests to the
thinknode framework.
The decimal_logger (dl) module that is imported is a library that provides prettified log output.
Includes optional file logging, timestamps, message coloring (when run through command
windows).

Refer to the section for more information on the provided decimal libraries.

import json
from lib import thinknode_worker as thinknode
from lib import decimal_logging as dl
from lib import dosimetry_types as dt

Get IAM ids
iam = thinknode.authenticate(thinknode.read_config('thinknode.cfg'))

def make_grid(corner, size, spacing):
...

http://docs.dosimetry.dotdecimal.com

2026/01/16 22:50 9/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

def make_water_phantom(corner, size, spacing):
...

def make_dose_points(pointCount):
...

def get_example_sobp_machine(id):
...

def make_layers(sad, range, mod):
...

def make_target():
 return \
 thinknode.function("dosimetry", "make_cube",
 [
 thinknode.value([-32, -20, -30]),
 thinknode.value([16, -10, 30])
])

def make_view():
 mv = dt.multiple_source_view()
 ds = {}
 ds['corner'] = [-100, -100]
 ds['size'] = [200, 200]
 mv.display_surface = ds
 mv.center = [0, 0, 0]
 mv.direction = [0, 1, 0]
 mv.distance = [2270, 2270]
 mv.up = [0, 0, 1]

 return mv.out()

def compute_aperture():
...

beam_geometry = \
...

Call compute_sobp_pb_dose2
dose_calc = \
 thinknode.function("dosimetry", "compute_sobp_pb_dose2",
 [
 make_water_phantom([-100, -100, -100], [200, 200, 200], [2, 2,
2]), #stopping_power_image
 thinknode.value(make_dose_points(181)), # dose_points
 beam_geometry, #beam_geometry

2026/01/16 22:50 10/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

 make_grid([-75, -75], [150, 150], [2, 2]), # bixel_grid
 make_layers(2270.0, 152.0, 38.0),
 compute_aperture(), # aperture based on targets
 thinknode.value([proton_degr]) # degraders
])

Perform calculation
res = thinknode.do_calculation(iam, dose_calc, id)
dl.data("Calculation Result: ", res.text)

Node.js

The following section contains examples using node.js and (if applicable) the specified modules. These
examples are for a high level approach to encoding and decoding the blob data that is part of the
Dosimetry App calculation request.

Base64 Blob Format

The blob returned by a calculation request is formatted as such:

// value_type enum definitions
// Nil = 0;
// Boolean = 1;
// Number = 2;
// String = 3;
// Blob = 4;
// List = 5;
// Record = 6;

// For value_types nil, boolean, number, string
// <uint32 value_type enum (4 bytes)><data>

// For value_types blob, list, record
// <uint31 value_type enum (4 bytes)><size of each data (8 bytes)><data>

Node: Decrypt Base64 Blob Data

The following example shows , using node.js, how to decode the base64 encoded data returned by a
calculation request.

// The below base64string is a blob array with the values [-25, -25, 25, -25,
25, 25, -25, 25]
var b64string = "CF2Hl0z_eJxjYWBgcGBABpYH0GgHHHwMcQDM7AYN";

2026/01/16 22:50 11/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

// The below base64string is a number set to the value 25.1
//var b64string = "NztmHgz_eJxjYmBgmDUTCCQtHQATFwOT";

var buf = new Buffer(b64string, 'base64');

var zlib = require('zlib');

function read_base_255_number(buf, offset) {
 var n = 0;
 var s = 0;
 while (offset < buf.length) {
 var digit = buf[offset];
 var value = buf.readUInt8(offset);
 offset++;
 s++;
 if (digit.toString(16) === 'ff') {
 break;
 }
 n = n * 255;
 n += value;
 }
 return [s, n];
}

var size = read_base_255_number(buf, 4);

zlib.unzip(buf.slice(4 + size[0]), function (err, data) {
 if (err) {
 throw err
 }
 var value_type = data.readUInt32LE(0);

 // Number
 if (value_type === 2) {
 console.log("DOUBLE", data.readDoubleLE(4));
 }
 // Blob
 else if (value_type === 4) {
 // Read size here
 var values = [];
 for (var i = 12; i < data.length; i+=8) {
 values.push(data.readDoubleLE(i));
 }
 console.log(values); // Outputs: [-25, -25, 25, -25, 25, 25, -25, 25
]
 }

2026/01/16 22:50 12/12 thinknode

decimal App Documentation - http://apps.dotdecimal.com/

});

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:
http://apps.dotdecimal.com/doku.php?id=userguide:thinknode&rev=1435002133

Last update: 2021/07/29 18:19

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=userguide:thinknode&rev=1435002133

	thinknode™ Examples
	C++
	thinknode.cpp
	C++: Immutable Storage
	C++: Calculation Request

	Python
	thinknode.cfg
	Python: Immutable Storage
	Post Generic ISS Object

	Python: Calculation Request
	Generic Calc Request
	SOBP Dose Calculation
	Example

	Node.js
	Node: Decrypt Base64 Blob Data

