2026/01/16 22:50 1/12 thinknode

thinknode™ Examples

These examples provide a starting point for issuing http connections and requests to the dosimetry app
on the thinknode™ framework. They are provided as is, and are written in python and c++. Any further
dependencies are listed along with the provided scripts.

C++

A simple C++ project that handles posting immutable objects and calculation requests to thinknode™
framework. The main() function toggles on which task to perform. Below are the defined functions of the
project as well as a link to download the file in its entirety.

Dependencies:

e libcurl
e jsoncpp

thinknode.cpp

e thinknode.cpp

// Copyright (c) 2015 .decimal, Inc. All rights reserved.
// Desc: Worker to perform tasks on thinknode framework

#include "stdafx.h"
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <json/json.h>

#define CURL_STATICLIB
#include <curl/curl.h>

using namespace std;

// API configuration

string basic_user = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456"; // Baseb4 encoded
username:password

string api url = "https://api.thinknode.com/v1.0"; // thinknode url
string app name = "Dosimetry"; // app name
string app version = "1.0.0"; // app version

decimal App Documentation - http://apps.dotdecimal.com/

http://curl.haxx.se/libcurl/c/example.html
https://github.com/open-source-parsers/jsoncpp
http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:thinknode.cpp

2026/01/16 22:50 2/12 thinknode

// Curl get request call back
static size t WriteCallback(void *contents, size t size, size t nmemb, void
*userp

// Select a specific json tag into string
string get json value(string json, string id, int num = 0

// Curllib get http request
string do curl get(string auth, string url

// Curllib post http request
string do_curl post(string auth, string json, string url

// Handles http request to get the user ID from the basic user
string get user token

// Handles http request for realm id
string get realm id(string token

// Handles http request for context id
string get context id(std::map<string, string> config

// API Authentication
std: :map<string, string> authenticate

// Grab and post the specified calc request
void post calc request

// Grab and post sepcified object to the ISS
void post immutable object

int main(void

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/16 22:50 3/12 thinknode

C++: Immutable Storage

The below example is a function in the thinknode.cpp class to post an immutable object to the dosimetry
app on the thinknode™ framework. This example can be used for any immutable storage post using any
datatype by replacing the json iss file.

Dependencies:
e compute_aperture_creation_params.json

void post immutable object

// Immutable info

string path = "C:\\"; // Path of folder
json file is located in

string sjon iss file = "aperture creation params.json"; // local json
object file

string obj name = "aperture creation params"; // app named type

std: :map<string, string> iam = authenticate();

// Read local immutable json file

std::ifstream json file((path + sjon iss file).c str ;

string str((std::istreambuf iterator<char>(json file)),
std::istreambuf iterator<char> ;

// Post object
std::cout << "Posting Object to ISS..." << std::endl;
string authentication string = "Authorization : Bearer " +
iam["user token"];
string res = do curl post
authentication string,
str,
api url + "/iss/named/" + app_name + "/" + obj name + "/7?context=" +
iam["context id"]);
std::cout << "Immuntable ID: " << res << std::endl;

Returns:

1. The ID (in json) of the object stored in Immutable Storage.
C++: Calculation Request

The below example is a function in the thinknode.cpp class to post a calculation request to dosimetry.

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:aperture_creation_params.json

2026/01/16 22:50 4/12 thinknode

This example can be used for any calculation request using any datatype by replacing the calculation
request json file. This request will post a calculation request, check the status using long polling with a
specified timeout, and return the calculation result.

Dependencies:
e compute_aperture.json

void post calc request

// Request info

string path = "C:\\"; // Path of folder json
file is located in

string sjon iss file = "compute aperture.json"; // local json calc
request

std: :map<string, string> iam = authenticate();

std::ifstream json file((path + sjon iss file).c str ;
string str((std::istreambuf iterator<char>(json file)),
std::istreambuf iterator<char> ;

string authentication string = "Authorization : Bearer " +
iam["user token"];

// Get calculation id

std::cout << "Sending Calculation..." << std::endl;

string calculation id = get json value
do curl post(authentication string,
str, api url + "/calc/?context=" + iam["context id"]),
“id");

// Get calculation Status - using long polling
std::cout << "Checking Calculation Status..." << std::endl;
string calculation status = get json value
do curl get(authentication string,
api url + "/calc/" + calculation id +
"/status/?status=completed&progress=1&timeout=5"),

Iltypell ;
calculation status.find("failed") != string::npos

std::cout << "Server Responded: " << calculation_status << std::endl;

’

// Get calculation Result
std::cout << "Fetching Calculation Result..." << std::endl;
string calculation result = do curl get

authentication string,

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/lib/exe/fetch.php?media=userguide:compute_aperture.json

2026/01/16 22:50 5/12 thinknode

api url + "/calc/" + calculation id + "/result/?context=" +
iam["context id"]);

std::cout << "Calculation Result: " << calculation result << std::endl;

Returns:

1. The calculation result (in json) of the API function called.

Python

The provided python scripts and libraries are meant to be a foundation and starting point for using the
astroid Dosimetry app on the thinknode™ framework. The provided scripts outline the basic usage of
using ISS to store objects, constructing, and making calculation requests to the calculation provider. The
below sections detail the basic usage for each script.

Download: The python astroid_script_library can be downloaded from the .decimal GitHub repository.

thinknode.cfg

Configuration file for connecting to the Dosimetry app on the thinknode™ framework. This file is required
by all scripts in the python astroid_script_library to authenticate and use the Dosimetry app.

e basic_user being a base64 encoded username and password. Refer to the thinknode
documentation for more information.

e api_url being the connection string to the thinknode™ framework.

e app_name being the current app name (e.g. dosimetry).

e app_version being the current version of dosimetry existing on the thinknode™ framework being
used.

thinknode.cfg

{
"basic user": "<Base64 encoded username:password>",
"api url": "https://api.thinknode.com/v1.0",
“app_name": "dosimetry",
“app_version": "1.0.0.0"

}

decimal App Documentation - http://apps.dotdecimal.com/

https://github.com/dotdecimal/astroid-script-library
http://www.docs.thinknode.com
http://www.docs.thinknode.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=3

2026/01/16 22:50 6/12 thinknode

Python: Immutable Storage

Post Generic ISS Object

The post_iss_object_generic.py is a basic python script that provides an example to post any dosimetry
type as an immutable object to the dosimetry app on the thinknode™ framework. This example can be
used for any immutable storage post using any datatype by replacing the json iss file. The current
example posts the aperture_creation_params.json as

Dependencies:

e thinknode.cfg

e .decimal Python libraries

e compute_aperture_creation_params.json (or any other prebuilt json file of a dosimetry object as
described in the Dosimetry Manifest Guide)

post_iss_object_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post an immutable json object to the thinknode framework

lib thinknode worker thinknode
lib decimal logging dl
requests
json

iss dir = "iss files"
json iss file "aperture creation params.json"
obj name = "aperture creation params”

Get IAM ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

App object to post to iss
open(iss dir + '/' + json iss file data file:
json data = json.load(data file

Post immutable object to ISS
res = thinknode.post immutable(iam, json data, obj name
dl.data("Immutable id: ", res.text

Returns:

1. The ID (in json) of the object stored in Immutable Storage.

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.dosimetry.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=4

2026/01/16 22:50 7/12 thinknode

Python: Calculation Request

Generic Calc Request

The post_calc_request _generic.py is a basic example to post a calculation request to dosimetry. This
example can be used for any calculation request using any datatype by replacing the calculation request
json file. This request will post a calculation request, check the status using long polling with a specified

timeout, and return the calculation result.
Dependencies:

e thinknode.cfg
e .decimal Python libraries
e compute_aperture.json (or any other prebuilt json file of a dosimetry object as described in the

Dosimetry Manifest Guide)

post_calc_request_generic.py

Copyright (c) 2015 .decimal, Inc. All rights reserved.
Desc: Post a json calculation request to the thinknode framework

lib thinknode worker thinknode
lib decimal logging dl
requests
json

request dir = "request files"
json calc file “compute aperture.json"

Get IAM 1ids
iam = thinknode.authenticate(thinknode.read config('thinknode.cfg'

App calculation request
open(request dir + '/' + json_calc_file data file:
json data = json.load(data file

Send calc request and wait for answer
res = thinknode.do calculation(iam, json data, True
dl.data("Calculation Result: ", res.text

Returns:

1. The calculation result (in json) of the API function called.

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.dosimetry.dotdecimal.com
http://apps.dotdecimal.com/doku.php?do=export_code&id=userguide:thinknode&codeblock=5

2026/01/16 22:50 8/12 thinknode

SOBP Dose Calculation

The post_calc_request sobp dose.py and post calc_request _sobp_dose with_shifter.py are basic
examples to create and call an sobp dose calculation function request to the dosimetry app on the
thinknode™ framework.

The post_calc_request sobp _dose.py example creates the entire calculation request inline using
thinknode structure, array, and function requests. The entire dose calculation request is performed using
one thinknode calculation provider call. While this structure of a request is a little more complicated to
setup and perform, it removes the need to post to ISS or perform ancillary calculations separately.

The post_calc_request sobp_dose_with_shifter.py adds in a complication of a degrader to the sobp
calculation. This example performs two separate calculation requests. The first request creates the
proton degrader_geometry and the second performs actual dose calculation request using the previously
made degrader. The entire example could be condensed into a single more complicated thinknode
calculation structure, eliminating the need to perform two separate requests, but it can also be simpler to
perform some calculations separately as shown.

Example

Below is an abbreviated version of the post calc_request_sobp_dose.py file. The abbreviated sections are
denoted as “...".

» The dosimetry_types (dt) module that is imported is a class library of all the dosimetry data types
as described in the Dosimetry Manifest Guide. This library provides easier manual construction of
the dosimetry data types.

e The thinknode_worker (thinknode) module that is imported is a library that provides worker
functions for performing and building the authentication, iss, and calculation requests to the
thinknode framework.

* The decimal_logger (dl) module that is imported is a library that provides prettified log output.
Includes optional file logging, timestamps, message coloring (when run through command
windows).

Refer to the Fix Me!

section for more information on the provided decimal libraries.

json
lib thinknode worker thinknode
lib decimal logging dl
lib dosimetry types dt

Get IAM 1ids
iam thinknode.authenticate(thinknode.read config('thinknode.cfg'

make grid(corner, size, spacing

decimal App Documentation - http://apps.dotdecimal.com/

http://docs.dosimetry.dotdecimal.com

2026/01/16 22:50 9/12 thinknode

make water phantom(corner, size, spacing):

make dose points(pointCount

get example sobp machine(id):

make layers(sad, range, mod

make target

\
thinknode.function("dosimetry", "make cube"

thinknode.value(|[-32, -20, -30
thinknode.value([16, -10, 30

make view

mv = dt.multiple source view
ds

ds['corner' -100, -100
ds|'size' 200, 200
mv.display surface = ds
mv.center 0, 0, 0
mv.direction 0, 1, 0
mv.distance 2270, 2270
mv.up 0, 0, 1

mv.out

compute aperture

beam geometry = \

Call compute sobp pb dose2
dose calc = \
thinknode. function("dosimetry", "compute sobp pb dose2"

make water phantom([-100, -100, -100 200, 200, 200 2, 2
2 #stopping power image

thinknode.value(make dose points(181 # dose points

beam geometry, #beam geometry

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/16 22:50 10/12 thinknode

make grid([-75, -75 150, 150 2, 2 # bixel grid
make layers(2270.0, 152.0, 38.0

compute aperture # aperture based on targets
thinknode.value(| proton degr!|) # degraders

Perform calculation
res = thinknode.do calculation(iam, dose calc, id
dl.data("Calculation Result: ", res.text

Node.js

The following section contains examples using node.js and (if applicable) the specified modules. These
examples are for a high level approach to encoding and decoding the blob data that is part of the
Dosimetry App calculation request.

Base64 Blob Format

The blob returned by a calculation request is formatted as such:

// value type enum definitions

// Nil = 0;
// Boolean = 1;
// Number = 2;
// String = 3;
// Blob = 4;
// List = 5;
// Record = 6;

// For value types nil, boolean, number, string
// <uint32 value type enum (4 bytes)><data>

// For value types blob, list, record
// <uint31 value type enum (4 bytes)><size of each data (8 bytes)><data>

Node: Decrypt Base64 Blob Data

The following example shows , using node.js, how to decode the base64 encoded data returned by a
calculation request.

// The below base64string is a blob array with the values [-25, -25, 25, -25,
25, 25, -25, 25]
b64string "CF2H10z eJxjYWBgcGBABpYHOGgHHHWMcQDM7AYN"

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/16 22:50 11/12 thinknode
// The below base64string is a number set to the value 25.1
//var b64string = "NztmHgz eJxjYmBgmDUTCCQtHQATFwOT";
buf Buffer(b64string, 'base64’
zlib require('zlib’
read base 255 number(buf, offset
n 0
S 0
while (offset buf.length
digit = buf|offset
value buf.readUInt8(offset
offset
S
digit.toString(16 "ff
n n 255
n value
s, n
size read base 255 number(buf, 4
zlib.unzip(buf.slice(4 + sizel[0 err, data
err
err
value type = data.readUInt32LE(0O
// Number
value type 2
console.log("DOUBLE", data.readDoubleLE(4
// Blob
value type 4
// Read size here
values
i =12; i < data.length; 1i+=8
values.push(data.readDoubleLE (i
console.log(values); // Outputs: [-25, -25, 25, -25, 25, 25, -25, 25

decimal App Documentation - http://apps.dotdecimal.com/

2026/01/16 22:50 12/12 thinknode

From:
http://apps.dotdecimal.com/ - decimal App Documentation

Permanent link:

Last update: 2021/07/29 18:19

decimal App Documentation - http://apps.dotdecimal.com/

http://apps.dotdecimal.com/
http://apps.dotdecimal.com/doku.php?id=userguide:thinknode&rev=1435002133

	thinknode™ Examples
	C++
	thinknode.cpp
	C++: Immutable Storage
	C++: Calculation Request

	Python
	thinknode.cfg
	Python: Immutable Storage
	Post Generic ISS Object

	Python: Calculation Request
	Generic Calc Request
	SOBP Dose Calculation
	Example

	Node.js
	Node: Decrypt Base64 Blob Data

